Open Access
Issue
E3S Web of Conf.
Volume 230, 2021
IV International Scientific and Technical Conference “Gas Hydrate Technologies: Global Trends, Challenges and Horizons” (GHT 2020)
Article Number 01020
Number of page(s) 8
DOI https://doi.org/10.1051/e3sconf/202123001020
Published online 18 January 2021
  1. Shnyukov, Ye.F., & Ziborov, A.P. (2004). The mineral wealth of the Black Sea. Кyiv, Ukraine: Department of Marine Geology and Sedimentary Ore-Formation under the National Academy of Sciences of Ukraine. [Google Scholar]
  2. Bondarenko, V., Ganushevych, K., Sai, K., & Tyshchenko, A. (2011). Development of gas hydrates in the Black Sea. Technical and Geoinformational Systems in Mining: School of Underground Mining 2011, 55–60. https://doi.org/10.1201/b11586-12 [Google Scholar]
  3. Sai, K., Malanchuk, Z., Petlovanyi, M., Saik, P., & Lozynskyi, V. (2019). Research of Thermodynamic Conditions for Gas Hydrates Formation from Methane in the Coal Mines. Solid State Phenomena, (291), 155–172. https://doi.org/10.4028/www.scientific.net/SSP.291.155 [CrossRef] [Google Scholar]
  4. Pivnyak, G., Bondarenko, V., Kovalevs’ka, I., & Illiashov, M. (2012). Geomechanical processes during underground mining. London, United Kingdom: CRC Press, Taylor & Francis Group. [Google Scholar]
  5. Bondarenko, V., Kovalevs’ka, I., & Ganushevych, K. (2014). Progressive technologies of coal, coalbed methane, and ores mining. London, United Kingdom: CRC Press, Taylor & Francis Group. https://doi.org/10.1201/b17547 [CrossRef] [Google Scholar]
  6. Pivnyak, G., Bondarenko, V., & Kovalevska, I. (2015). New developments in mining engineering 2015. London, United Kingdom: CRC Press, Taylor & Francis Group. https://doi.org/10.1201/b19901 [CrossRef] [Google Scholar]
  7. Drеus, А.Уu., Bоndаrеnkо, V.І., Bіlеtskуі, V.S., & Lуsеnkо, R.S. (2020). Mаthеmаtіcаl sіmulаtіоn оf hеаt аnd mаss еxchаngе prоcеssеs durіng dіssоcіаtіоn оf gаs hуdrаtеs іn а pоrоus mеdіum. Nаukоvуі Vіsnуk Nаtsіоnаlnоhо Hіrnуchоhо Unіvеrsуtеtu, 5 (179), https://dоі.оrg/10.33271/nvngu/2020-5/033 [Google Scholar]
  8. Ovchynnikov, M., Ganushevych, K., & Sai, K. (2013). Methodology of gas hydrates formation from gaseous mixtures of various compositions. Annual Scientific-Technical Collection - Mining of Mineral Deposits, 203–205. https://doi.org/10.1201/b16354-37 [CrossRef] [Google Scholar]
  9. Bondarenko, V., Svietkina, O., & Sai, K. (2017). Study of the formation mechanism of gas hydrates of methane in the presence of surface-active substances. Eastern-European Journal of Enterprise Technologies, 5 (6(89)), 48–55. https://doi.org/10.15587/1729-4061.2017.112313 [CrossRef] [Google Scholar]
  10. Maksymova, E., Ovchynnikov, M., Lysenko, R., & Kostrytska, S. (2018). Physical and chemical methods of methane utilization in Ukrainian coal mines. Solid State Phenomena, (277), 147–156. https://doi.org/10.4028/www.scientific.net/SSP.277.147 [CrossRef] [Google Scholar]
  11. Bondarenko V., Kovalevska I., Astafiev D., Malova O. (2018). Examination of phase transition of mine methane to gas hydrates and their sudden failure – Percy Bridgman’s effect. Solid State Phenomena, (277), 137–146. https://doi.org/10.4028/www.scientific.net/SSP.277.137 [CrossRef] [Google Scholar]
  12. Biletsky, V.S., Haiko, H.I., & Orlovsky, V.M. (2019). Istoriya ta perspektyvy naftohazovydobuvannya. Lviv, Ukraina: Novyy Svit. [Google Scholar]
  13. Haiko, H., & Pyha, L. (2017). Shielded development of bottom gas hydrates. Mining of Mineral Deposits, 11(3), 117–123. https://doi.org/10.15407/mining11.03.117 [CrossRef] [Google Scholar]
  14. Haiko, H., Ogorodnyk, Y., Pyha, L., & Durove, J. (2018). Shielded development of marine bottom gas hydrates by fracking a layer. Solid State Phenomena, (277) 27–35. https://doi.org/10.4028/www.scientific.net/ssp.277.27 [CrossRef] [Google Scholar]
  15. Kuznetsov, O.L., Simkin, E.M., & Chilingar Dzh. (2001). Fizicheskiye osnovy vibratsionnogo i akusticheskogo vozdeystviya na neftegazovyye plasty. Moskva, Rossiya: Mir. [Google Scholar]
  16. Mechel, F.P. (2008). Formulas of acoustics editors. London, United Kingdom: Springer. [CrossRef] [Google Scholar]
  17. Hayko, H.I., Zhyvkov, O.P., Kamaral,i R.V., & Pyha, L.M. (2019). Rezonator hel’mhol’tsa i rezonans Fano v protsesakh naftohazovydobuvannya. II Mizhnarodna Naukovo-Tekhnichna Konferentsiya “Problemy Heoinzheneriyi ta Pidzemnoyi Urbanistyky”. Kyiv, Ukraina. [Google Scholar]
  18. Ilchenko, M.E., & Zhivkov, A.P. (2017). Areas of degeneration oscillations in metamaterial cells. International Conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo). [Google Scholar]
  19. Ghanadi, F., Arjomandi, M., Cassolato, B., & Zander, A. (2014). Interaction of a flow-excited Helmholz resonator with a grazing turbulent boundary layer. Experimental Thermal and Fluid Science, (58) 80–92. https://doi.org/10.1016/j.expthermflusci.2014.06.016 [CrossRef] [Google Scholar]
  20. Pimshteyn, V.G. (2010). Aeroakusticheskiye vzaimodeystviya v turbulentnykh struyakh. Moskva, Rossiya: FIZMATLIT. [Google Scholar]
  21. Kamenetskii, E., Sadreev, A., & Miroshnichenko, A. (2018). Fano resonances in optics and microwaves. London, United Kingdom: Springer. [CrossRef] [Google Scholar]
  22. Zhivkov, А.P., Shevtsov, K.O., & Kamarali, R.V. (2019). Fano resonance and metamaterial cells equivalent circuits. International Conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo). [Google Scholar]
  23. Ilchenko, M., Uryvsky, L., & Globa, L. (2019). Advances in information and communication technologies. London, United Kingdom: Springer. [CrossRef] [Google Scholar]
  24. Dychkovskyi, R., Vladyko, O., Maltsev, D., Cabana, E.C. (2018). Some aspects of the compatibility of mineral mining technologies. Rudarsko-Geološko-Naftni Zbornik, 33(4), 73–82. https://doi.org/10.17794/rgn.2018.4.7 [CrossRef] [Google Scholar]
  25. Hayko, H.I., Zhyvkov, O.P., & Pyha, L.M. (2019). Application of acoustic helmholtz resonator for dissociation of gas hydrates. Patent UA #137077. Kyiv, Ukraine. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.