Open Access
E3S Web of Conf.
Volume 230, 2021
IV International Scientific and Technical Conference “Gas Hydrate Technologies: Global Trends, Challenges and Horizons” (GHT 2020)
Article Number 01022
Number of page(s) 11
Published online 18 January 2021
  1. Petlovanyi, M.V., Lozynskyi, V.H., Saik, P.B., & Sai, K.S. (2018). Modern experience of low-coal seams underground mining in Ukraine. International Journal of Mining Science and Technology, 28(6), 917–923. [Google Scholar]
  2. Dunayevska, N. (2019). Coal research institute kept the power on in Ukraine. Nature, 568(7752), 316–316. [CrossRef] [Google Scholar]
  3. Lozynskyi, V., Medianyk, V., Saik, P., Rysbekov, K., & Demydov, M. (2020). Multivariance solutions for designing new levels of coal mines. Rudarsko Geolosko Naftni Zbornik, 35(2), 23–32. [CrossRef] [Google Scholar]
  4. Galiyev, S.Zh., Dovzhenok, A.D., Kol’ga, A.S., Galiyev, D.A., & Uteshov, E.T. (2019). Digitalization and the potential for improving the design and planning of mining operations in open cast mining. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 1(439), 146–154. [Google Scholar]
  5. Rysbekov, K., Toktarov, A., Kalybekov, T., Moldabayev, S., Yessezhulov, T., & Bakhmagambetova, G. (2020). Mine planning subject to prepared ore reserves rationing. E3S Web of Conference, (168), 00016. [CrossRef] [Google Scholar]
  6. Sotskov, V., Dereviahina, N., & Malanchuk, L. (2019). Analysis of operation parameters of partial backfilling in the context of selective coal mining. Mining of Mineral Deposits, 13(4), 129–138. [CrossRef] [Google Scholar]
  7. Kuzmenko, O., Petlyovanyy, M., & Heylo, A. (2014). Application of fine-grained binding materials in technology of hardening backfill construction. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 465–469. [Google Scholar]
  8. Kuz’menko, O., Petlyovanyy, M., & Stupnik, M. (2013). The influence of fine particles of binding materials on the strength properties of hardening backfill. Annual Scientific-Technical Colletion – Mining of Mineral Deposits, 45–48. [CrossRef] [Google Scholar]
  9. Arslanov, M.Z., Mustafin, S.A., Zeinullin, A.A., Kulpeshov, B.S., & Mustafin, T.S. (2020). Model for determining classification of filling materials hardening. News of National Academy of Sciences of the Republic of Kazakhstan, 5(443), 6–12. [CrossRef] [Google Scholar]
  10. Kalybekov, T., Rysbekov, K., Sandibekov, M., Bi, Y.L., & Toktarov, A. (2020). Substantiation of the intensified dump reclamation in the process of field development. Mining of Mineral Deposits, 14(2), 59–65. [CrossRef] [Google Scholar]
  11. Popovych, V., Stepova, K., Voloshchyshyn, A., & Bosak, P. (2019). Physico-chemical properties of soils in lviv volyn coal basin area. E3S Web of Conferences, (105), 02002. [CrossRef] [EDP Sciences] [Google Scholar]
  12. Petlovanyi, M., Ruskykh, V., Zubko, S., & Medianyk, V. (2020). Dependence of the mined ores quality on the geological structure and properties of the hanging wall rocks. E3S Web of Conferences, (201), 01027. [CrossRef] [EDP Sciences] [Google Scholar]
  13. Golinko, V., Yavors’ka, O., & Lebedev, Y. (2011). Substabtiation of the parameters of elements of mine vent systems while exploiting bedded deposits of horizontal occurence. Technical and Geoinformational Systems in Mining, 141–144. [Google Scholar]
  14. Bondarenko, V.I., Kharin, Ye.N., Antoshchenko, N.I., & Gasyuk, R.L. (2013). Osnovnye nauchnye polozheniya prognoza dinamiki metanovydeleniya pri otrabotke gazonosnykh ugol’nykh plastov. Naukovyi Visnyk NHU, (5), 24–30. [Google Scholar]
  15. Khomenko, O., Kononenko, M., & Myronova, I. (2013). Blasting works technology to decrease an emission of harmful matters into the mine atmosphere. Annual Scientific-Technical Colletion – Mining of Mineral Deposit, 231–235. [CrossRef] [Google Scholar]
  16. Cherniaiev, O.V. (2017). Systematization of the hard rock non-metallic mineral deposits for improvement of their mining technologies. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 11–17. [Google Scholar]
  17. Abdiev, A., Mambetova, R., Abdiev, A., & Abdiev, Sh. (2020). Studying a correlation between characteristics of rock and their conditions. Mining of Mineral Deposits, 14(3), 87–100. [CrossRef] [Google Scholar]
  18. Malkowski, P., & Ostrowski, L. (2019). Convergence monitoring as a basis for numerical analysis of changes of rock-mass quality and hoek-brown failure criterion parameters due to longwall excavation. Archives of Mining Sciences, 64(1), 93–118. [Google Scholar]
  19. Dychkovskyi, R., Shavarskyi, Ia., Saik, P., Lozynskyi, V., Falshtynskyi, V., & Cabana, E. (2020). Research into stress-strain state of the rock mass condition in the process of the operation of double-unit longwalls. Mining of Mineral Deposits, 14(2), 85–94. [CrossRef] [Google Scholar]
  20. Gorova, A., Pavlychenko, A., & Borysovs’ka, O. (2013). The study of ecological state of waste disposal areas of energy and mining companies. Annual Scientific-Technical Colletion – Mining of Mineral Deposits, 169–172. [CrossRef] [Google Scholar]
  21. Buzylo, V., Pavlychenko, A., Savelieva, T., & Borysovska, O. (2018). Ecological aspects of managing the stressed-deformed state of the mountain massif during the development of multiple coal layers. E3S Web of Conferences, (60), 00013. [CrossRef] [EDP Sciences] [Google Scholar]
  22. Pivnyak, G.G., & Shashenko, O.M. (2015). Innovations and safety for coal mines in Ukraine. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 118–121. [Google Scholar]
  23. Dychkovskyi, R., Vladyko, O., Maltsev, D., & Cabana, E.C. (2018). Some aspects of the compatibility of mineral mining technologies. Rudarsko-Geološko-Naftni Zbornik, 33(4), 73–82. [CrossRef] [Google Scholar]
  24. Bondarenko, V., Svietkina, O., & Sai, K. (2017). Study of the formation mechanism of gas hydrates of methane in the presence of surface-active substances. Eastern-European Journal of Enterprise Technologies, 5 (6(89)),48–55. [CrossRef] [Google Scholar]
  25. Sadovenko, I.A., & Derevyagina, N.I. (2012). About activation potential of loess landslide massif. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 80–84. [Google Scholar]
  26. Kirin, R., Hryshchak, S., & Illarionov, O. (2020). Features of legal support for the operation of small atypical Ukrainian coal mines under contractual conditions of a public-private partnership. Mining of Mineral Deposits, 14(2), 128–137. [CrossRef] [Google Scholar]
  27. Ma, Z., Pei, X., Yi, Y., Liu, Y., & Zhang, X. (2019). The impact of the ukraine crisis on the planning of russian-european natural gas pipeline projects. Journal of Coastal Research, (98), 392. [CrossRef] [Google Scholar]
  28. Shevchenko, S., Koval, A., Danylchenko, D., & Koval, V. (2020). Energy crisis and electricity reform of ukraine – first results. IEEE KhPI Week on Advanced Technology, (9250119), 526–529. [Google Scholar]
  29. Rakhunkova palata. (2019). Zvit Rakhunkovoi palaty za 2019 rik pro rezultaty audytu efektyvnosti vykorystannia koshtiv derzhavnoho biudzhetu 12. 11.2019No. 32-2. Retrieved from [Google Scholar]
  30. Serdiuk, O.S. (2012). Alternatyvni pidkhody do restrukturyzatsii vuhilnoi haluzi Ukrainy. Naukovi pratsi NDFI, 3(60), 115–121. [Google Scholar]
  31. Falshtynskyi, V.S., Dychkovskyi, R.O., Saik, P.B., Lozynskyi, V.H., & Cabana, E.C. (2017). Formation of thermal fields by the energy-chemical complex of coal gasification. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 36–42. [Google Scholar]
  32. Virchenko, V. (2009). Synerhetychnyi pidkhid v ekonomichnykh doslidzhenniakh. Visnyk Kyivskoho Natsionalnoho Universytetu im. Tarasa Shevchenka, (110), 34–36. [Google Scholar]
  33. Sribna, Y., Trokhymets, O., Nosatov, I., & Kriukova, I. (2019). The globalization of the world coal market – contradictions and trends. E3S Web of Conferences, (123), 01044. [CrossRef] [EDP Sciences] [Google Scholar]
  34. Lahutin, V.D. (2019). Teoretyko-metodolohichni transformatsii ekonomichnoi nauky u XXI st. Kyiv: Kyivskyi natsionalnyi torhovelnoekonomichnyi universytet. [Google Scholar]
  35. Ovchynnikov, M., Ganushevych, K., & Sai, K. (2013). Methodology of gas hydrates formation from gaseous mixtures of various compositions. Annual Scientific-Technical Colletion – Mining of Mineral Deposits, 203–205. [Google Scholar]
  36. Sai, K., Malanchuk, Z., Petlovanyi, M., Saik, P., & Lozynskyi, V. (2019). Research of thermodynamic conditions for gas hydrates formation from methane in the coal mines. Solid State Phenomena, (291), 155–172. [CrossRef] [Google Scholar]
  37. Bondarenko, V., Kovalevska, I., Astafiev, D., & Malova, O. (2018). Examination of phase transition of mine methane to gas hydrates and their sudden failure – Percy Bridgman’s effect. Solid State Phenomena, (277), 137–146. [CrossRef] [Google Scholar]
  38. Kong, Z., Dong, X., & Liu, G. (2016). Coal-based synthetic natural gas vs. imported natural gas in China: a net energy perspective. Journal of Cleaner Production, (131), 690–701. [CrossRef] [Google Scholar]
  39. Lozynskyi, V.G., Dychkovskyi, R.O., Falshtynskyi, V.S., Saik, P.B., & Malanchuk, Ye.Z. (2016). Experimental study of the influence of crossing the disjunctive geological faults on thermal regime of underground gasifier. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 21–29. [Google Scholar]
  40. Bhutto, A.W., Bazmi, A.A., & Zahedi, G. (2013). Underground coal gasification: From fundamentals to applications. Progress in Energy and Combustion Science, 39(1), 189–214. [CrossRef] [Google Scholar]
  41. Dutta, S., Wen, C.Y., & Belt, R.J. (1977). Reactivity of coal and char. 1. in carbon dioxide atmosphere. Industrial and Engineering Chemistry Process Design and Development, 16(1), 20–30. [CrossRef] [Google Scholar]
  42. Higman, C., & Van Der Burgt, M. (2003). Gasification. [Google Scholar]
  43. Lozynskyi, V., Dychkovskyi, R., Saik, P., & Falshtynskyi, V. (2018). Coal seam gasification in faulting zones (heat and mass balance study). Solid State Phenomena, (277), 66–79. [CrossRef] [Google Scholar]
  44. Ye, D.P., Agnew, J.B., & Zhang, D.K. (1998). Gasification of a south australian low-rank coal with carbon dioxide and steam: Kinetics and reactivity studies. Fuel, 77(11), 1209–1219. [CrossRef] [Google Scholar]
  45. Saik, P., Petlevanyi, M., Lozynskyi, V., Sai, K., & Merzlikin, A. (2018). Innovative approach to the integrated use of energy resources of underground coal gasification. Solid State Phenomena, (277), 221–231. [CrossRef] [Google Scholar]
  46. Lazarenko, S.N., Trizno, S.K., & Kravtsov, P.V. (2010). Primenenie modifitsirovannoy tekhnologii podzemnoy gazifikatsii uglya dlya razrabotki vysokogazonosnykh ugol’nykh mestorozhdeniy. Gornyy Informatsionno-Analiticheskiy Byulleten’, (2), 354–357. [Google Scholar]
  47. Falshtynskyi, V., Saik, P., Lozynskyi, V., Dychkovskyi, R., & Petlovanyi, M. (2018). Innovative aspects of underground coal gasification technology in mine conditions. Mining of Mineral Deposits, 12(2), 68–75. [CrossRef] [Google Scholar]
  48. Beshta, O.S. (2012). Electric drives adjustment for improvement of energy efficiency of technological processes. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 98–107. [Google Scholar]
  49. Pivnyak, G.G., Sobolev, V.V., & Filippov, A.O. (2012). Phase transformations in bituminous coals under the influence of weak electric and magnetic fields. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 43–49. [Google Scholar]
  50. Zhao, Y., Zang, L., Li, Z., & Qin, J. (2012). Discussion on the model of mining circular economy. Energy Procedia, (16), 438–443. [CrossRef] [Google Scholar]
  51. Bondarenko, V., Kovalevs’ka, I., & Ganushevych, K. (2014). Progressive technologies of coal, coalbed methane, and ores mining. London, United Kingdom: CRC Press, Taylor & Francis Group, 523 p. [CrossRef] [Google Scholar]
  52. Wang, H., & Li, Z. (2020). Safety management of coal mining process. IOP Conference Series: Earth and Environmental Science, (598), 012005. [Google Scholar]
  53. Adjiski, V., Despodov, Z., Mirakovski, D., & Serafimovski, D. (2019). System architecture to bring smart personal protective equipment wearables and sensors to transform safety at work in the underground mining industry. Rudarsko Geolosko Naftni Zbornik, 34(1), 37–44. [CrossRef] [Google Scholar]
  54. Mustakhimov, A., & Zeynullin, A. (2020). Scaled-up laboratory research into dry magnetic separation of the Zhezdinsky concentrating mill tailings in Kazakhstan. Mining of Mineral Deposits, 14(3), 71–77. [CrossRef] [Google Scholar]
  55. Saik, P.B., Dychkovskyi, R.O., Lozynskyi, V.H., Malanchuk, Z.R., & Malanchuk, Ye.Z. (2016). Revisiting the underground gasification of coal reserves from contiguous seams. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 60–66. [Google Scholar]
  56. Falshtyns’kyy, V., Dychkovs’kyy, R., Lozyns’kyy, V., & Saik, P. (2013). Justification of the gasification channel length in underground gas generator. Annual Scientific-Technical Colletion – Mining of Mineral Deposits, 125–132. [CrossRef] [Google Scholar]
  57. Falshtynskyi, V., Dychkovskyi, R., Saik, P., & Lozynskyi, V. (2014). Some aspects of technological processes control of an in-situ gasifier during coal seam gasification. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 109–112. [Google Scholar]
  58. Dreus, A.Yu., Sudakov, A.K., Kozhevnikov, A.A., & Vakhalin, Yu.N. (2016). Study on thermal strength reduction of rock formation in the diamond core drilling process using pulse flushing mode. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (3), 5–10. [Google Scholar]
  59. Pivnyak, G., Dychkovskyi, R., Bobyliov, O., Cabana, E.C., & Smoliński, A. (2018). Mathematical and geomechanical model in physical and chemical processes of underground coal gasification. Solid State Phenomena, (277), 1–16. [CrossRef] [Google Scholar]
  60. Stańczyk, K., Kapusta, K., Wiatowski, M., Świądrowski, J., Smoliński, A., Rogut, J., & Kotyrba, A. (2012). Experimental simulation of hard coal underground gasification for hydrogen production. Fuel, 91(1), 40–50. [CrossRef] [Google Scholar]
  61. Hu, Z., Peng, Ya., Sun, P., Chen, Sh., & Zhou, Yu. (2020). Thermodynamic 1 equilibrium simulation on the synthesis gas composition in the context of underground coal gasification. Preprint. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.