Open Access
E3S Web Conf.
Volume 328, 2021
International Conference on Science and Technology (ICST 2021)
Article Number 04015
Number of page(s) 4
Section Information System, Big Data, Design Application, IOT
Published online 06 December 2021
  1. T. Hale et al., “A global panel database of pandemic policies (Oxford COVID-19 Government Response Tracker),” Nat. Hum. Behav., vol. 5, no. 4, pp. 529–538, (2021), doi: 10.1038/s41562-021-01079-8. [CrossRef] [Google Scholar]
  2. A. Dewi et al., “Global policy responses to the COVID-19 pandemic: proportionate adaptation and policy experimentation: a study of country policy response variation to the COVID-19 pandemic,” Heal. Promot. Perspect., vol. 10, no. 4, pp. 359–365, Nov. (2020), doi: 10.34172/hpp.2020.54. [CrossRef] [Google Scholar]
  3. E. Razumovskaia, L. Yuzvovich, E. Kniazeva, M. Klimenko, and V. Shelyakin, “The Effectiveness of Russian Government Policy to Support SMEs in the COVID-19 Pandemic,” Journal of Open Innovation: Technology, Market, and Complexity , vol. 6, no. 4. (2020), doi: 10.3390/joitmc6040160. [CrossRef] [Google Scholar]
  4. A. Altiparmakis, A. Bojar, S. Brouard, M. Foucault, H. Kriesi, and R. Nadeau, “Pandemic politics: policy evaluations of government responses to COVID-19,” West Eur. Polit., vol. 44, no. 5–6, pp. 1159–1179, Sep. (2021), doi: 10.1080/01402382.2021.1930754. [CrossRef] [Google Scholar]
  5. A. Sukamto and S. Panca Parulian, “Religious Community Responses to the Public Policy of the Indonesian Government Related to the covid-19 Pandemic,” J. Law, Relig. State, vol. 8, no. 2–3, pp. 273–283, (2020), doi: [CrossRef] [Google Scholar]
  6. F. C. Permana, Z. M. Wicaksono, C. Kurniawan, A. S. Abdullah, and B. N. Ruchjana, “Perception analysis of the Indonesian society on twitter social media on the increase in BPJS kesehatan contribution in the Covid 19 pandemic era,” J. Phys. Conf. Ser., vol. 1722, p. 12022, 2021, doi: 10.1088/17426596/1722/1/01(2022). [Google Scholar]
  7. C. P. Garris and B. Fleck, “Student evaluations of transitioned-online courses during the COVID-19 pandemic.,” Scholarsh. Teach. Learn. Psychol., 2020, doi: 10.1037/stl0000229. [Google Scholar]
  8. J. Zhou, “The role of libraries in distance learning during COVID-19,” Inf. Dev., (2021), doi: 10.1177/02666669211001502. [Google Scholar]
  9. J. J. Ratcliff, K. I. Minster, and C. Monheim, “Engaging students in an online format during the COVID-19 pandemic: A jury voir dire activity.,” Scholarsh. Teach. Learn. Psychol., (2021), doi: 10.1037/stl0000246. [Google Scholar]
  10. L. Santibañez and C. M. Guarino, “The Effects of Absenteeism on Academic and Social-Emotional Outcomes: Lessons for COVID-19,” Educ. Res., pp. 1–9, (2021), doi: 10.3102/0013189X21994488. [Google Scholar]
  11. Y. Wiratomo and F. Mulyatna, “Use of Learning Management Systems in Mathematics Learning during a Pandemic,” J. Math. Pedagog., vol. 1, no. 2, pp. 62–71, (2020). [Google Scholar]
  12. A. J. Azar et al., “Design, Implementation and Evaluation of a Distance Learning Framework to Expedite Medical Education during COVID19 pandemic: A Proof-of-Concept Study,” J. Med. Educ. Curric. Dev., vol. 8, p. 238212052110003, (2021), doi: 10.1177/23821205211000349. [CrossRef] [Google Scholar]
  13. T. D. Pham, L. Dwyer, J.-J. Su, and T. Ngo, “COVID-19 impacts of inbound tourism on Australian economy,” Ann. Tour. Res., vol. 88, p. 103179, 2021, doi: [CrossRef] [Google Scholar]
  14. A. Sharif, C. Aloui, and L. Yarovaya, “COVID19 pandemic, oil prices, stock market, geopolitical risk and policy uncertainty nexus in the US economy: Fresh evidence from the wavelet-based approach,” Int. Rev. Financ. Anal., vol. 70, p. 101496, (2020), doi: [CrossRef] [Google Scholar]
  15. S. E. Obi, T. Yunusa, A. N. Еzеoguеri-Oyеwolе, S. S. Sekpe, E. Egwemi, and A. S. Isiaka, “The Socio-Economic Impact of Covid-19 on The Economic Activities of Selected States in Nigeria,” Indones. J. Soc. Environ. Issues, vol. 1, no. 2 SE-, pp. 39–47, Aug. (2020), doi: 10.47540/ijsei.v1i2.10. [Google Scholar]
  16. R. Cui, H. Ding, and F. Zhu, “Gender Inequality in Research Productivity During the COVID-19 Pandemic,” Manuf. Serv. Oper. Manag., Jun. 2021, doi: 10.1287/msom.(2021).0991. [Google Scholar]
  17. Y. Zhai and X. Du, “Addressing collegiate mental health amid COVID-19 pandemic,” Psychiatry Res., vol. 288, p. 113003, 2020, doi: 03. [CrossRef] [PubMed] [Google Scholar]
  18. T. M. Yildirim and H. Eslen-Ziya, “The differential impact of COVID-19 on the work conditions of women and men academics during the lockdown,” Gender, Work Organ., vol. 28, no. S1, pp. 243–249, Jan. (2021), doi: [CrossRef] [Google Scholar]
  19. Y. Xiao, B. Becerik-Gerber, G. Lucas, and S. C. Roll, “Impacts of Working From Home During COVID-19 Pandemic on Physical and Mental Well-Being of Office Workstation Users,” J. Occup. Environ. Med., vol. 63, no. 3, pp. 181– 190, Mar. (2021), doi: 10.1097/JOM.0000000000002097. [CrossRef] [PubMed] [Google Scholar]
  20. A. Nediari, C. Roesli, and P. M. Simanjuntak, “Preparing post Covid-19 pandemic office design as the new concept of sustainability design,” IOP Conf. Ser. Earth Environ. Sci., vol. 729, no. 1, p. 12095, 2021, doi: 10.1088/17551315/729/1/012095. [CrossRef] [Google Scholar]
  21. I. T. Alsedrah and E. A. Hacine Gherbi, “Impact of COVID-19 pandemic on total market trade value (institutional investors vs non-institutional investors),” J. Sustain. Financ. Invest., pp. 1–13, Mar. (2021), doi: 10.1080/20430795.2021.1905412. [CrossRef] [Google Scholar]
  22. A. Jauhari and F. Ayu, “The Development of Information Systems for Measuring Student Performance at MTs Al-Azhar Paseseh Tanjung Bumi,” vol. 04, no. 01, pp. 1–4, (2019). [Google Scholar]
  23. R. Fauzan, D. Siahaan, S. Rochimah, and E. Triandini, “Use Case Diagram Similarity Measurement: A New Approach,” in 2019 12th International Conference on Information & Communication Technology and System (ICTS), 2019, pp. 3–7, doi: 10.1109/ICTS.(2019).8850978. [CrossRef] [Google Scholar]
  24. F. Zulfa, D. O. Siahaan, R. Fauzan, and E. Triandini, “Inter-Structure and Intra-Structure Similarity of Use Case Diagram using Greedy Graph Edit Distance,” in 2020 2nd International Conference on Cybernetics and Intelligent System (ICORIS), (2020), pp. 1–6, doi: 10.1109/ICORIS50180.2020.9320840. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.