Open Access
Issue
E3S Web Conf.
Volume 238, 2021
100RES 2020 – Applied Energy Symposium (ICAE), 100% RENEWABLE: Strategies, Technologies and Challenges for a Fossil Free Future
Article Number 01009
Number of page(s) 8
Section Renewable Energies
DOI https://doi.org/10.1051/e3sconf/202123801009
Published online 16 February 2021
  1. A.A. Kiss, J. Lange, B. Schuur, D.W.F. Brilman, A.G.J. Van Der Ham, S.R.A. Kersten, Separation technology-Making a difference in biorefineries, Biomass and Bioenergy. 95 (2016) 296–309. doi:10.1016/j.biombioe.2016.05.021. [Google Scholar]
  2. J. Lehto, A. Oasmaa, Y. Solantausta, M. Kytö, D. Chiaramonti, Review of fuel oil quality and combustion of fast pyrolysis bio-oils from lignocellulosic biomass, Appl. Energy. 116 (2014) 178–190. doi:10.1016/j.apenergy.2013.11.040. [Google Scholar]
  3. S. Czernik, A. V Bridgwater, Overview of Applications of Biomass Fast Pyrolysis Oil, (2004) 590–598. doi:10.1021/ef034067u. [Google Scholar]
  4. J. Kim, Production, separation and applications of phenolic-rich bio-oil – A review, Bioresour. Technol. 178 (2015) 90–98. doi:10.1016/j.biortech.2014.08.121. [Google Scholar]
  5. L.Y. Garcia-chavez, C.M. Garsia, B. Schuur, A.B. De Haan, Biobutanol Recovery Using Nonfluorinated Task-Specific Ionic Liquids, (2012). doi:10.1021/ie201855h. [Google Scholar]
  6. A.S. Pollard, M.R. Rover, R.C. Brown, J. Anal. Appl. Pyrolysis. 93 (2012) 129–138. doi:10.1016/j.jaap.2011.10.007. [Google Scholar]
  7. T. Chen, C. Deng, R. Liu, Effect of selective condensation on the characterization of bio-oil from pine sawdust fast pyrolysis using a fluidized-bed reactor, Energy and Fuels. 24 (2010) 6616–6623. doi:10.1021/ef1011963. [Google Scholar]
  8. P.T. Williams, A.J. Brindle, Temperature selective condensation of tyre pyrolysis oils to maximise the recovery of single ring aromatic compounds, Fuel. 82 (2003) 1023–1031. doi:10.1016/S0016-2361(03)00016-4. [Google Scholar]
  9. A. Tumbalam Gooty, D. Li, C. Briens, F. Berruti, Fractional condensation of bio-oil vapors produced from birch bark pyrolysis, Sep. Purif. Technol. 124 (2014) 81–88. doi:10.1016/j.seppur.2014.01.003. [Google Scholar]
  10. R.J.M. Westerhof, N.J.M. Kuipers, S.R.A. Kersten, W.P.M. Van Swaaij, Controlling the water content of biomass fast pyrolysis oil, Ind. Eng. Chem. Res. 46 (2007) 9238–9247. doi:10.1021/ie070684k. [Google Scholar]
  11. R.J.M. Westerhof, D.W.F. Brilman, M. GarciaPerez, Z. Wang, S.R.G. Oudenhoven, W.P.M. Van Swaaij, S.R.A. Kersten, Fractional condensation of biomass pyrolysis vapors, Energy and Fuels. 25 (2011) 1817–1829. doi:10.1021/ef2000322. [Google Scholar]
  12. H.S. Grecel, Production and characterization of pyrolysis liquids from sunflower-pressed bagasse., Bioresour. Technol. (2003) 113–117. [Google Scholar]
  13. B. Bronson, D. Mazerolle, T. Robinson, Consequences of using an immiscible quench fluid for engineering scale R&D in fast pyrolysis, Pyne 45. (2019) 1–33. [Google Scholar]
  14. R.J. Bedmutha, L. Ferrante, C. Briens, F. Berruti, I. Inculet, Single and two-stage electrostatic demisters for biomass pyrolysis application, Chem. Eng. Process. Process Intensif. 48 (2009) 1112–1120. doi:10.1016/j.cep.2009.02.007. [Google Scholar]
  15. D.L. Dalluge, L.E. Whitmer, J.P. Polin, Y.S. Choi, B.H. Shanks, R.C. Brown, Comparison of direct and indirect contact heat exchange to improve recovery of bio-oil, Appl. Energy. 251 (2019) 113346. doi:10.1016/j.apenergy.2019.113346. [Google Scholar]
  16. A. V. Bridgwater, Review of fast pyrolysis of biomass and product upgrading, Biomass and Bioenergy. 38 (2012) 68–94. doi:10.1016/j.biombioe.2011.01.048. [Google Scholar]
  17. BTG, Fast pyrolysis, (n.d.). https://www.btgworld.com/en/rtd/technologies/fast-pyrolysis. [Google Scholar]
  18. M. Siriwardhana, Fractional condensation of pyrolysis vapours as a promising approach to control bio-oil aging : Dry birch bark bio-oil, Renew. Energy. 152 (2020) 1121–1128. doi:10.1016/j.renene.2020.01.095. [Google Scholar]
  19. B. Peterson, C. Engtrakul, A.N. Wilson, S.D. Orco, K.A. Orton, S. Deutch, M.M. Yung, A.K. Starace, Y. Parent, D. Chiaramonti, K.A. Magrini, Catalytic Hot-Gas Filtration with a Supported Heteropolyacid Catalyst for Preconditioning Biomass Pyrolysis Vapors, ACS Sustain. Chem. Eng. 7 (2019) 14941–14952. doi:10.1021/acssuschemeng.9b03188. [Google Scholar]
  20. A. Oasmaa, S. Czernik, Fuel oil quality of biomass pyrolysis oils state of the art for the end users, Energy and Fuels. 13 (1999) 914–921. doi:10.1021/ef980272b. [Google Scholar]
  21. F.H. Mahfud, F.P. Van Geel, R.H. Venderbosch, H.J. Heeres, Acetic acid recovery from fast pyrolysis oil. An exploratory study on liquid-liquid reactive extraction using aliphatic tertiary amines, Sep. Sci. Technol. 43 (2008) 3056–3074. doi:10.1080/01496390802222509. [Google Scholar]
  22. S.A. Channiwala, P.P. Parikh, Fuel. 81 (2002) 1051–1063. doi:10.1016/S00162361(01)00131-4. [Google Scholar]
  23. J. Lian, S. Chen, S. Zhou, Z. Wang, J. O’Fallon, C.Z. Li, M. Garcia-Perez, Separation, hydrolysis and fermentation of pyrolytic sugars to produce ethanol and lipids, Bioresour. Technol. 101 (2010) 9688–9699. doi:10.1016/j.biortech.2010.07.071. [Google Scholar]
  24. F. De Miguel Mercader, M.J. Groeneveld, S.R.A. Kersten, C. Geantet, G. Toussaint, N.W.J. Way, C.J. Schaverien, K.J.A. Hogendoorn, Hydrodeoxygenation of pyrolysis oil fractions: Process understanding and quality assessment through co-processing in refinery units, Energy Environ. Sci. 4 (2011) 985–997. doi:10.1039/c0ee00523a. [Google Scholar]
  25. J. Zhu, C. Yan, X. Zhang, C. Yang, M. Jiang, X. Zhang, A sustainable platform of lignin : From bioresources to materials and their applications in rechargeable batteries and supercapacitors, Prog. Energy Combust. Sci. 76 (2020) 100788. doi:10.1016/j.pecs.2019.100788. [Google Scholar]
  26. Y. Zhang, Z. Gao, N. Song, J. He, X. Li, Graphene and its derivatives in lithium e sulfur batteries, Mater. Today Energy. 9 (2018) 319–335. doi:10.1016/j.mtener.2018.06.001. [Google Scholar]
  27. Q. Smejkal, D. Linke, M. Baerns, Energetic and economic evaluation of the production of acetic acid via ethane oxidation, Chem. Eng. Process. Process Intensif. 44 (2005) 421–428. doi:10.1016/j.cep.2004.06.004. [Google Scholar]
  28. A. Teella, G.W. Huber, D.M. Ford, Separation of acetic acid from the aqueous fraction of fast pyrolysis bio-oils using nanofiltration and reverse osmosis membranes, J. Memb. Sci. 378 (2011) 495–502. doi:10.1016/j.memsci.2011.05.036. [Google Scholar]
  29. S.P. Zhang, X.J. Li, Q.Y. Li, Q.L. Xu, Y.J. Yan, Hydrogen production from the aqueous phase derived from fast pyrolysis of biomass, J. Anal. Appl. Pyrolysis. 92 (2011) 158–163. doi:10.1016/j.jaap.2011.05.007. [Google Scholar]
  30. D. Castello, L. Rosendahl, Coprocessing of pyrolysis oil in refineries, Elsevier Ltd., 2018. doi:10.1016/B978-0-08-101029-7.00008-4. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.