Open Access
Issue
E3S Web Conf.
Volume 238, 2021
100RES 2020 – Applied Energy Symposium (ICAE), 100% RENEWABLE: Strategies, Technologies and Challenges for a Fossil Free Future
Article Number 01010
Number of page(s) 6
Section Renewable Energies
DOI https://doi.org/10.1051/e3sconf/202123801010
Published online 16 February 2021
  1. Kagel, A., Bates, D., Gawell, K., A Guide to Geothermal Energy and the Environment, (2007), Geothermal Energy Association www.geo-energy.org. [Google Scholar]
  2. Rice, K.M., Walker, E.M., Wu, M., Gillette, M., Blough, E.: Environmental Mercury and Its Toxic Effects, Journal of Preventive Medicine and Public Health, 47, (2014), 74-83. [Google Scholar]
  3. Baldacci A., Mannari M., Sansone F.: Greening of Geothermal Power: An Innovative Technology for Abatement of Hydrogen Sulphide and Mercury Emission, Proceedings, World Geothermal Congress 2005, Antalya, Turkey, (2005). [Google Scholar]
  4. Eberle, A., Heath, G., Nicholson, S., Carpenter, A.: Systematic Review of Life Cycle Greenhouse Gas Emissions from Geothermal Electricity, NREL, (2017), (www.nrel.gov/publications). [Google Scholar]
  5. Bruscoli, L, Fiaschi, D., Manfrida, G., Tempesti, D., Improving the Environmental Sustainability of Flash Geothermal Power Plants—A Case Study, Sustainability, 7, (2015), 15262-15283, doi:10.3390/su71115262. [Google Scholar]
  6. Shafaei M.J., Abedi J., Hassanzadeh H., Chen Z.: Reverse gas-lift technology for CO2 storage into deep saline aquifers, Energy, 45, (2012), 840-849. [Google Scholar]
  7. Snæbjörnsdóttir S.O., Orlkers E.H., Mesin K., Aradóttir E.S., Dideriksen K., Gunnarsson I., Gunnlaugsson E., Matter J.M., Stute M., Gislason S.R.: The chemistry and saturation states of subsurface fluids during the in situ mineralisation of CO2 and H2S at the CarbFix site in SWIceland, International Journal of Greenhouse Gas Control, 58, (2017), 87-102. [Google Scholar]
  8. Guo B., Li G., Song J., Li J.: A feasibility study of gas-lift drilling in unconventional tight oil and gas reservoirs, Journal of Natural Gas Science and Engineering, 37, (2017), 551-559. [Google Scholar]
  9. Buonasorte, G., Cataldi, R., Ceccarelli, A., Costantini, A., D’Offizi, S., Lazzarotto, A.: Ricerca ed esplorazione nell’area geotermica di Torre Alfina (Lazio-Umbria), Boll.Soc.Geol.It., (1988), 265–337. [Google Scholar]
  10. Buonasorte, G., Pandeli, E., Fiordelisi, A.: The Alfina 15 well: deep geological data from Northern Latium (Torre Alfina geothermal area), Boll.Soc.Geol.It., (1991), 823–831. [Google Scholar]
  11. Regione Umbria, Università di Perugia: Studio delle potenzialità geotermiche del territorio regionale umbro Report finale, (2013). [Google Scholar]
  12. DGS-UNMIG, M. dello sviluppo economico: Pozzi geotermici, (2018a), http://unmig.mise.gov.it/unmig/geotermia/pozzi/pozzi.as p (accessed 12.25.18). [Google Scholar]
  13. DGS-UNMIG, M. dello sviluppo economico: Inventario delle risorse geotermiche nazionali, (2018b), http://unmig.sviluppoeconomico.gov.it/unmig/geotermia/inventario/inventario.asp (accessed 12.25.18). [Google Scholar]
  14. DGS-UNMIG, M. dello sviluppo economico: Ricerca di risorse geotermiche finalizzata alla sperimentazione di Impianti Pilota, (2019), https://unmig.mise.gov.it/index.php/it/dati/risorsegeotermiche/ricerca-di-risorse-geotermiche-finalizzataalla-sperimentazione-di-impianti-pilota (accessed 5.9.19). [Google Scholar]
  15. Italian Ministry of the Environment and Protection of Land and Sea : Impianto pilota geotermico denominato “Torre Alfina”, Acquapendente (VT) VAS VIA AIA, (2018), http://www.va.minambiente.it/it-IT/Oggetti/Info/1566 (accessed 12.25.18). [Google Scholar]
  16. Bejan A., Tsatsaronis G., Moran M.J.: Thermal Design and Optimization, John Wiley & Sons, (1996). [Google Scholar]
  17. Klein S.A., Nellis G.F.: Mastering EES, f-Chart software, (2012). [Google Scholar]
  18. Colucci V., Fiaschi D., Leveni M., Manfrida G., Talluri L.: Thermodynamic model of geothermal resources for low-medium temperature energy conversion process optimization, Chemical Engineering Transactions, 76, (2019). [Google Scholar]
  19. ISO (2006a). ISO 14040: Environmental management: Life-cycle assessment: Principles and framework. International Organization for Standardization, Geneva, Switzerland, available at http://www.iso.org (last accessed on 12/07/2019). [Google Scholar]
  20. ISO (2006b). ISO 14044: Environmental management: Life-cycle assessment: Requirements and guidelines. International Organization for Standardization, Geneva, Switzerland. available at http://www.iso.org (last accessed on 12/07/2019). [Google Scholar]
  21. Wernet G., Bauer C., Steubing B., Reinhard J., MorenoRuiz E., Weidema, B.: The ecoinvent database version 3 (part I): overview and methodology, The International Journal of Life Cycle Assessment, 21, (2016), 1218–1230. [Google Scholar]
  22. Di Noi C., Ciroth A., Srocka M.: OpenLCA 1.7, Comprehensive User Manual, GreenDelta GmbH, Berlin, Germany, (2017). [Google Scholar]
  23. Huijbregts M.A.J., Steinmann Z.J.N., Elshout P.M.F., Stam G., Verones F., Vieira M.D.M., Hollander A., Zijp M., Van Zelm R., ReCiPe 2016, A harmonized life cycle assessment method at midpoint and endpoint level, Report, National Institute for Public Health and the Environment, The Netherlands, (2016). [Google Scholar]
  24. Asdrubali, F., Baldinelli, G., D’Alessandro, F., Scrucca, F., Life cycle assessment of electricity production from renewable energies: Review and results harmonization, Renewable and Sustainable Energy Reviews 42, (2015), 1113–1122. [Google Scholar]
  25. Fiaschi D., Manfrida G., Rogai E., Talluri L.: Exergoeconomic analysis and comparison between ORC and Kalina cycles to exploit low and medium-high temperature heat from two different geothermal sites, Energy Conversion and Management, 154, (2017), 503-516. [Google Scholar]
  26. Trever, K., Bauer, C.: Life cycle inventories of electricity generation and power supply in version 3 of the ecoinvent database-part I: electricity generation, The International Journal of Life Cycle Assessment, 21(9), (2016a), 1236-1254. [Google Scholar]
  27. Trever, K., Bauer, C.: Life cycle inventories of electricity generation and power supply in version 3 of the ecoinvent database-part II: electricity markets, The International Journal of Life Cycle Assessment, 21(9), (2016b), 1255-1268. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.