Open Access
Issue
E3S Web Conf.
Volume 238, 2021
100RES 2020 – Applied Energy Symposium (ICAE), 100% RENEWABLE: Strategies, Technologies and Challenges for a Fossil Free Future
Article Number 06001
Number of page(s) 7
Section Renewable Energies in Buildings
DOI https://doi.org/10.1051/e3sconf/202123806001
Published online 16 February 2021
  1. D. Pinel, “Clustering methods assessment for investment in zero emission neighborhoods’ energy system, ” IJEPES, Vol. 121, (2020). [Google Scholar]
  2. T. Capuder and P. Mancarella, “Technoeconomic and environmental modelling and optimization of flexible distributed multigeneration options, ” Energy, Vol. 71, pp. 516-533, (2014). [Google Scholar]
  3. A. Fleischhacker, G. Lettner, D. Schwabeneder and H. Auer, “Portfolio optimization of energy communities to meet reductions in costs and emissions, ” Energy, Vol. 173, pp. 1092-1105, (2019). [Google Scholar]
  4. P. Gabrielli, M. Gazzani, E. Martelli and M. Mazzotti, “Optimal design of multi-energy systems with seasonal storage, ” Applied Energy, Vol. 219, pp. 408-424, (2018). [Google Scholar]
  5. S. Mashayekh, M. Stadler, G. Cardoso and M. Heleno, “A mixed integer linear programming approach for optimal DER portfolio, sizing, and placement in multi-energy microgrids, ” Applied Energy, Vol. 187, pp. 154-168, (2017). [Google Scholar]
  6. B. Morvaj, R. Evins and J. Carmeliet, “Optimising urban energy systems: Simultaneous system sizing, operation and district heating network layout, ” Energy, Vol. 116, pp. 619-636, (2016). [Google Scholar]
  7. C. Weber and N. Shah, “Optimisation based design of a district energy system for an ecotown in the United Kingdom, ” Energy, Vol. 36, pp. 1292-1308, (2011). [Google Scholar]
  8. M. Pavičević, T. Novosel, T. Pukšec and N. Duić, “Hourly optimization and sizing of district heating systems considering building refurbishment – Case study for the city of Zagreb, ” Energy, Vol. 137, pp. 1264-1276, (2017). [Google Scholar]
  9. B. Fina, H. Auer and W. Friedl, “Profitability of active retrofitting of multi-apartment buildings: Building-attached/integrated photovoltaics with special consideration of different heatingsystems, ” Energy and Buildings, Vol. 190, pp. 86-102, (2019). [Google Scholar]
  10. M. Fesanghary, S. Asadi and Z. W. Geem, “Design of low-emission and energy-efficient residential buildings using a multi-objective optimization algorithm, ” Building and Environment, Vol. 49, pp. 245-250, (2012). [Google Scholar]
  11. W. Wang, R. Zmeureanu and H. Rivard, “Applying multi-objective genetic algorithms in green building design optimization, ” Building and Environment, Vol. 40, no. 11, pp. 1512-1525, (2005). [Google Scholar]
  12. E. Antipova, D. Boer, G. Guillén-Gosálbez, L. F. Cabeza and L. Jiménez, “Multi-objective optimization coupled with life cycle assessment for retrofitting buildings, ” Energy and Buildings, Vol. 82, pp. 92-99, (2014). [Google Scholar]
  13. K. B. Lindberg and G. Doorman, “Hourly load modelling of non-residential building stock, ” in Powertech, Grenoble, (2013). [Google Scholar]
  14. K. B. Lindberg, G. Doorman, J. E. Chacon and D. Fischer, “Hourly electricity load modelling of non-residential passive buildings in a nordic climate, ” in Powertech, Eindhoven, (2015). [Google Scholar]
  15. Y. Fan and X. Xia, “A Multi-objective Optimization Model for BuildingEnvelope Retrofit Planning, ” in ICAE, Energy Procedia, Abu Dhabi, (2015). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.