Open Access
E3S Web Conf.
Volume 238, 2021
100RES 2020 – Applied Energy Symposium (ICAE), 100% RENEWABLE: Strategies, Technologies and Challenges for a Fossil Free Future
Article Number 10006
Number of page(s) 6
Section New Concepts
Published online 16 February 2021
  1. Qiu G., Liu H., Riffat S., Expanders for microCHP systems with organic Rankine cycle, Appl. Therm. Eng, 31 (2011). [Google Scholar]
  2. J. Fischer, Comparison of trilateral cycles and organic Rankine cycles, Energy, 36 (2011). [Google Scholar]
  3. EHPA (European Heat Pump Association) Heat pumps on the rise – time to move to system integration!, (2016), last access June 12, 2020. [Google Scholar]
  4. M. Imran, M. Usman, B.S. Park, D.H. Lee, Volumetric expanders for low grade heat and waste heat recovery applications Renew. Sustain. Energy Rev, 57 (2016). [Google Scholar]
  5. Tesla, N., “Turbine”, U.S. Patent No. 1 061 206, 1913. [Google Scholar]
  6. Carey, V.P., “Assessment of Tesla Turbine Performance for Small Scale Rankine Combined Heat and Power Systems”, Journal of Eng. for Gas Turbines and Power, Vol. 132, 2010. [Google Scholar]
  7. Carey, V.P., “Computational/Theoretical Modeling of Flow Physics and Transport in Disk Rotor Drag Turbine Expanders for Green Energy Conversion Technologies”, Proceedings of theASME 2010 International Mechanical Engineering Congress and Exposition. [Google Scholar]
  8. Guha, A., and Sengupta S., “The fluid dynamics of the rotating flow in a Tesla disc turbine”, European Journal of Mechanics B/Fluids, Vol. 37, 2013. [Google Scholar]
  9. Schosser C., Fuchs T., Hain R., Lecheler S., Kahler C., “Three–dimensional particle tracking velocimetry in a Tesla turbine rotor using a non– intrusive calibration method”, in: 18th International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics, Lisbon, 2016. [Google Scholar]
  10. Manfrida G., Talluri L., “Fluid dynamics assessment of the Tesla turbine rotor”, in: Thermal Science, 2019. [Google Scholar]
  11. Talluri L., Fiaschi D., Neri G., Ciappi L., “Design and optimization of a Tesla turbine for ORC applications”, in: Appl. Energy, 226, 2018. [Google Scholar]
  12. Renuke A., Traverso A., Pascenti M., “Experimental and computational investigation of Tesla Air Micro-Expanders”, in: International Gas Turbine Congress (IGTC), Tokyo, 2019. [Google Scholar]
  13. Peshlakai A, “Challenging the Versatility of the Tesla Turbine: Working Fluid Variations and Turbine Performance”, M.S. Thesis, Arizona State University, 2012. [Google Scholar]
  14. Song J., Gu C.W., Li X.S., “Performance estimation of Tesla turbine applied in small scale Organic Rankine Cycle (ORC) system”, in: Appl. Therm. Eng., 110, 2017. [Google Scholar]
  15. Ciappi L., Fiaschi D., Niknam P.H., Talluri L., 2019. Computational investigation of the flow inside a Tesla turbine rotor, Energy, 173: 207-217. [Google Scholar]
  16. Traverso A., Reggio F., Silvestri P., Rizzo S., Engelbrecht G., Chasoglous A., Two-phase flow expansions: development of an innovative test-rig for flow characterization and CFD validation, E3S Web Conf., Vol. 113, (2019), SUPEHR19 Sustainable PolyEnergy generation and HaRvesting. [Google Scholar]
  17. P. Iora, A. Cassago, C. Invernizzi, G. di Marcoberardino, A. Copeta, S. Uberti, D. Fiaschi, L. Talluri, L. Tribioli, Assessment of Energy Consumption and Range in Electric Vehicles with High Efficiency HVAC Systems Based on the Tesla Expander, ” SAE Technical Paper 2019-240244, 2019. [Google Scholar]
  18. Sheikhnejad Y., Simoes J., Martins N., Energy harvesting by a novel substitution for expansion valves: special focus on city gate station of highpressure natural gas pipelines, energies, (2020), 12, 956. [Google Scholar]
  19. Sheikhnejad Y., Simoes J., Martins N., Introducing Tesla turbine to enhance energy efficiency of refrigeration cycle, Energy Reports, 6, (2020). [Google Scholar]
  20. Guha, A., and Smiley, B., “Experiment and analysis for an improved design of the inlet and nozzle in Tesla disc turbines”, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy. [Google Scholar]
  21. Fiaschi, D., Innocenti, I., Manfrida, G., Maraschiello, F., “Design of micro radial turboexpanders for ORC power cycles: From 0D to 3D”, Applied Thermal Engineering, Vol. 99, 2016. [Google Scholar]
  22. Manfrida G., Pacini L., Talluri L., “A revised Tesla turbine concept for ORC applications”, in: Energy Procedia, 129, 2017. [Google Scholar]
  23. Manfrida G., Pacini L., Talluri L., “An upgrade Tesla turbine concept for ORC applications”, in: Energy, 158, 2018. [Google Scholar]
  24. Engineering Equation Solver, EES, F-Chart software, Po Box 444042, Madison, WI 53744, [Google Scholar]
  25. Niknam PH., Fiaschi D., Mortaheb HR., Mokhtarani, An improved formulation for speed of sound in two-phase systems and development of 1D model for supersonic nozzles, Fluid Phase Equilibria, 446, (2017). [Google Scholar]
  26. Awad MM., Muzychka YS., Two-phase flow modeling in microchannels and minichannels, Heat Transfer Engineering, 31, (2010). [Google Scholar]
  27. Li X., Hibiki T., Frictional pressure drop correlation for two-phase flows in mini and micro multi channels, App. Thermal Eng., 16, (2017). [Google Scholar]
  28. Talluri L., Dumont O., Manfrida G., Lemort V., Fiaschi D., “Geometry and performance assessment of Tesla turbines for ORC”, in: Proceedings of ORC2019, 5th International Seminar on ORC Power Systems, September 9-11, 2019, Athens, Greece. [Google Scholar]
  29. Talluri L., Dumont O., Manfrida G., Lemort V., Fiaschi D., Experimental investigation of an Organic Rankine Cycle Tesla turbine working with R1233zd(E), Applied Thermal Engineering, 174, 2020. [Google Scholar]
  30. Galoppi G., Ferrari L., Ferrara G., Fiaschi D., Development and characterization of a compact rig to test expanders for superheated and saturated organic fluids, En. Conv. And Man., (2019). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.