Open Access
Issue
E3S Web Conf.
Volume 239, 2021
International Conference on Renewable Energy (ICREN 2020)
Article Number 00002
Number of page(s) 16
DOI https://doi.org/10.1051/e3sconf/202123900002
Published online 10 February 2021
  1. Hamm, G., & Borison, A. Forecasting long-run electricity prices. The electricity journal, 19(7), 47-57 (2006) [Google Scholar]
  2. Kuhn, M. Building predictive models in R using the caret package. Journal of statistical software, 28(5), 1-26 (2008) [PubMed] [Google Scholar]
  3. Bui, D. T., Tuan, T. A., Klempe, H., Pradhan, B., & Revhaug, I. Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides, 13(2), 361-378 (2016) [Google Scholar]
  4. Geisser, S. Predictive inference. Routledge (2017) [Google Scholar]
  5. Choi, Y. B. Paradigms and conventions: Uncertainty, decision making, and entrepreneurship. University of Michigan Press (1993) [Google Scholar]
  6. Box, G. E. Science and statistics. Journal of the American Statistical Association, 71(356), 791-799 (1976) [Google Scholar]
  7. Pappas, S. S., Ekonomou, L., Karamousantas, D. C., Chatzarakis, G. E., Katsikas, S. K., & Liatsis, P. Electricity demand loads modeling using AutoRegressive Moving Average (ARMA) models. Energy, 33(9), 1353-1360 (2008) [Google Scholar]
  8. Liu, H., & Shi, J. Applying ARMA–GARCH approaches to forecasting short-term electricity prices. Energy Economics, 37, 152-166 (2013) [Google Scholar]
  9. Simonsen, I. Measuring anti-correlations in the Nordic electricity spot market by wavelets. Physica A: Statistical Mechanics and its applications, 322, 597-606 (2003) [Google Scholar]
  10. Miranian, A., Abdollahzade, M., & Hassani, H. Day-ahead electricity price analysis and forecasting by singular spectrum analysis. IET Generation, Transmission & Distribution, 7(4), 337-346 (2013) [Google Scholar]
  11. Chen, X., Dong, Z. Y., Meng, K., Xu, Y., Wong, K. P., & Ngan, H. W. Electricity price forecasting with extreme learning machine and bootstrapping. IEEE Transactions on Power Systems, 27(4), 2055-2062 (2012) [Google Scholar]
  12. Chen, Y., He, Z., Shang, Z., Li, C., Li, L., & Xu, M. A novel combined model based on echo state network for multi-step ahead wind speed forecasting: A case study of NREL. Energy conversion and management, 179, 13-29 (2019) [Google Scholar]
  13. Liu, H., Tian, H. Q., Liang, X. F., & Li, Y. F. Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks. Applied Energy, 157, 183-194 (2015). [Google Scholar]
  14. Pir, M. Y., Shah, F. A., & Asger, M. Comparative study of different wavelet based neural network models for IIP growth forecasting using different yield spreads. International Journal of Electrical Electronics & Computer Science Engineering, 4(6), 5-13 (2017) [Google Scholar]
  15. Nagaraja, Y., Devaraju, T., Kumar, M. V., & Madichetty, S. A survey on wind energy, load and price forecasting: (Forecasting methods). In 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT) (pp. 783-788). IEEE (2016, March) [Google Scholar]
  16. Jain, L. C., Seera, M., Lim, C. P., & Balasubramaniam, P. A review of online learning in supervised neural networks. Neural computing and applications, 25(3-4), 491-509 (2014) [Google Scholar]
  17. Moreno, S. R., & dos Santos Coelho, L. Wind speed forecasting approach based on singular spectrum analysis and adaptive neuro fuzzy inference system. Renewable energy, 126, 736-754 (2018) [Google Scholar]
  18. Yang, D., & Alessandrini, S. An ultra-fast way of searching weather analogs for renewable energy forecasting. Solar Energy, 185, 255-261 (2019) [Google Scholar]
  19. Simmhan, Y., & Noor, M. U. Scalable prediction of energy consumption using incremental time series clustering. In 2013 IEEE International Conference on Big Data (pp. 29-36). IEEE (2013, October) [Google Scholar]
  20. Costa M. A., Mineti L. B., Prates M. O., Cardenas, R. R. Dynamic Time ScanForecasting. arXiv e-prints. Jun;:arXiv:1906.05399 (2019) [Google Scholar]
  21. Rostamnia, N., & Rashid, T. A. Investigating the effect of competitiveness power in estimating the average weighted price in electricity market. The Electricity Journal, 32(8), 106628 (2019) [Google Scholar]
  22. Khosravi, A., Nahavandi, S., Creighton, D., & Naghavizadeh, R. Uncertainty quantification for wind farm power generation. In The 2012 International Joint Conference on Neural Networks (IJCNN) (pp. 1-6). IEEE (2012, June) [Google Scholar]
  23. Heck, N., Smith, C., & Hittinger, E. A Monte Carlo approach to integrating uncertainty into the levelized cost of electricity. The Electricity Journal, 29(3), 21-30 (2016) [Google Scholar]
  24. Schuh, G., Prote, J. P., Sauermann, F., & Franzkoch, B. Databased prediction of orderspecific transition times. CIRP Annals (2019). [Google Scholar]
  25. Woo, C. K., & Zarnikau, J. A nice electricity market design. The Electricity Journal, 32(9), 106638 (2019) [Google Scholar]
  26. Resende, L., Soares, M., & Ferreira, P. Electric power load in Brazil: view on the longterm forecasting models. Production, 28 (2018) [Google Scholar]
  27. Ioakimidis, C. S., Oliveira, L. J., & Genikomsakis, K. N. Wind power forecasting in a residential location as part of the energy box management decision tool. IEEE Transactions on Industrial Informatics, 10(4), 2103-2111 (2014). [Google Scholar]
  28. Tian, P., Xiao, X., Wang, K., & Ding, R. A hierarchical energy management system based on hierarchical optimization for microgrid community economic operation. IEEE Transactions on Smart Grid, 7(5), 2230-2241 (2015) [Google Scholar]
  29. Weron, R. Modeling and forecasting electricity loads and prices: A statistical approach (Vol. 403). John Wiley & Sons (2007) [Google Scholar]
  30. Weron, R. Electricity price forecasting: A review of the state-of-the-art with a look into the future. International journal of forecasting, 30(4), 1030-1081 (2014) [Google Scholar]
  31. Strozzi, F., Colicchia, C., Creazza, A., & Noè, C. Literature review on the ‘Smart Factory’concept using bibliometric tools. International Journal of Production Research, 55(22), 6572-6591 (2017) [Google Scholar]
  32. Analytics, C. Web of science core collection. Citation database. Web of Science. Retrieved from https://www.webofknowledge.com/WOS (2017) [Google Scholar]
  33. Aria, M. & Cuccurullo, C. Bibliometrix: An R-tool for comprehensive science mapping analysis, Journal of Informetrics, 11(4), pp 959-975, Elsevier (2017) [Google Scholar]
  34. Van Eck, N., & Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523-538 (2009) [PubMed] [Google Scholar]
  35. Chamber of Electric Energy Commercialization. DSP Historical Prices. Retrieved from https://www.ccee.org.br (2019) [Google Scholar]
  36. Glaz, J., & Balakrishnan, N. (Eds.). Scan statistics and applications. Springer Science & Business Media (2012) [Google Scholar]
  37. Makridakis, S., & Hibon, M. The M3-Competition: results, conclusions and implications. International journal of forecasting, 16(4), 451-476 (2000) [Google Scholar]
  38. Hyndman, R. J. A brief history of forecasting competitions (No. 3/19). Monash University, Department of Econometrics and Business Statistics (2019) [Google Scholar]
  39. Makridakis, S., Spiliotis, E., & Assimakopoulos, V. The M4 Competition: 100, 000 time series and 61 forecasting methods. International Journal of Forecasting, 36(1), 5474 (2020) [Google Scholar]
  40. Al-Alawi, S. M., & Islam, S. M. Principles of electricity demand forecasting. I. Methodologies. Power Engineering Journal, 10(3), 139-143 (1996) [Google Scholar]
  41. Azadeh, A., Ghaderi, S. F., & Sohrabkhani, S. Annual electricity consumption forecasting by neural network in high energy consuming industrial sectors. Energy Conversion and management, 49(8), 2272-2278 (2008) [Google Scholar]
  42. Green, R. J., & Newbery, D. M. Competition in the British electricity spot market. Journal of political economy, 100(5), 929-953 (1992) [Google Scholar]
  43. De Vany, A. S., & Walls, W. D. Cointegration analysis of spot electricity prices: insights on transmission efficiency in the western US. Energy Economics, 21(5), 435448 (1999) [Google Scholar]
  44. Wolfram, C. D. Measuring duopoly power in the British electricity spot market. American Economic Review, 89(4), 805-826 (1999) [Google Scholar]
  45. Green, R. Draining the Pool: the reform of electricity trading in England and Wales. Energy Policy, 27(9), 515-525 (1999) [Google Scholar]
  46. Brookes, B. C. Bradford’s law and the bibliography of science. Nature, 224(5223), 953-956 (1969). [PubMed] [Google Scholar]
  47. Klemperer, P. What really matters in auction design. Journal of economic perspectives, 16(1), 169-189 (2002) [Google Scholar]
  48. Arroyo, J. M., & Conejo, A. J. Optimal response of a thermal unit to an electricity spot market. IEEE Transactions on power systems, 15(3), 1098-1104 (2000) [Google Scholar]
  49. Figueiredo, N. C., da Silva, P. P., & Cerqueira, P. A. It is windy in Denmark: Does market integration suffer?. Energy, 115, 1385-1399 (2016). [Google Scholar]
  50. Figueiredo, N. C., da Silva, P. P., & Cerqueira, P. A. Evaluating the market splitting determinants: evidence from the Iberian spot electricity prices. Energy Policy, 85, 218-234 (2015) [Google Scholar]
  51. Bartlett, M. S. Properties of sufficiency and statistical tests. Proceedings of the Royal Society of London. Series A-Mathematical and Physical Sciences, 160(901), 268-282 (1937) [Google Scholar]
  52. Shapiro, S. S., & Wilk, M. B. An analysis of variance test for normality (complete samples). Biometrika, 52(3/4), 591-611 (1965) [Google Scholar]
  53. Veloso, R. G. Real Options Model to Evaluate the Production Strategy in a Electricity Industry vs. Electricity Price (Doctoral dissertation). Federal University of Minas Gerais, Belo Horizonte, Brazil (2015) [Google Scholar]
  54. Tukey, J. W. Comparing individual means in the analysis of variance. Biometrics, 5(2), 99-114 (1949) [Google Scholar]
  55. Böckler, L., & Pereira, M. G. Consumer (Co-) Ownership in Renewables in Brazil. In Energy Transition (pp. 535-557). Palgrave Macmillan, Cham (2019) [Google Scholar]
  56. Santos, E. S. D., Juchem, L., & Maduro, L. A. R. Performance sport, tax waiver and sports incentive law. Journal of Physical Education, 28 (2017) [Google Scholar]
  57. Munhoz, F. C. The necessity of more temporal granularity in the Brazilian short-term electricity market. Sustainable Energy, Grids and Networks, 11, 26-33 (2017) [Google Scholar]
  58. Guimarães, C., & Piefer, N. Brazil: (Future) green energy power and strategic partner for the EU?. Comparative European Politics, 15(1), 23-44 (2017) [Google Scholar]
  59. Gomes, R., & Poltronieri, R. The Electricity Sector and the Structure of the Short-Term Market in Brazil. In Energy Law and Regulation in Brazil (pp. 113-135). Springer, Cham (2018) [Google Scholar]
  60. Botterud, A., Kristiansen, T., & Ilic, M. D. The relationship between spot and futures prices in the Nord Pool electricity market. Energy Economics, 32(5), 967-978 (2010) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.