Open Access
E3S Web Conf.
Volume 244, 2021
XXII International Scientific Conference Energy Management of Municipal Facilities and Sustainable Energy Technologies (EMMFT-2020)
Article Number 05024
Number of page(s) 11
Section Ecodesign and Energy Labelling
Published online 19 March 2021
  1. EU Parliament and the Council, Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011 Laying Down Harmonised Conditions for the Marketing of Construction Products and Repealing Council Directive 89/106/EEC (2011) [Google Scholar]
  2. D. Bryde, M. Broquetas, J.M. Volm, The project benefits of Building Information Modeling (BIM), Int. J. Proj. Manag., 31, 971–980 (2013) [Google Scholar]
  3. B. Becerik-Gerber, F. Jazizadeh, N. Li, G. Calis, Application areas and data requirements for BIM-enabledfacilities management, J. Constr. Eng. Manag., 138, 431–442 (2012) [Google Scholar]
  4. J. Cheng, L. Ma, A BIM-based system for demolition and renovation waste quantification and planning, Proceedings of the 14th International Conference on computing in Civil and Building Engineering (ICCCBE 2012) (Moskow, 2012) [Google Scholar]
  5. I. Gursel, S. Sariyildiz, Ö. Akin, R. Stouffs, Modeling and visualization of lifecycle building performance assessment, Adv. Eng. Inform., 23, 369–417 (2009) [Google Scholar]
  6. ISO Standard, ISO 29481-1:2010(E): Building Information Modeling — Information Delivery Manual — Part 1: Methodology and Format (2010) [Google Scholar]
  7. T. Cerovsek, A review and outlook for a “Building Information Model (BIM)”: a multi-standpoint framework for technological development, Adv. Eng. Inform., 25, 224–244 (2011) [Google Scholar]
  8. A. Watson, Digital buildings — challenges and opportunities, Adv. Eng. Inform., 25, 573–581 (2011) [Google Scholar]
  9. P. Tang, D. Huber, B. Akinci, R. Lipman, A. Lytle, Automatic reconstruction of as-built building information models from laser-scanned point clouds: a review of related techniques, Autom. Constr., 19, 829–843 (2010) [Google Scholar]
  10. G. Lee, R. Sacks, C. Eastman, Specifying parametric building object behavior (BOB) for a building information modeling system, Autom. Constr., 15, 758–776 (2006) [Google Scholar]
  11. J. Lucas, T. Bulbul, W. Thabet, An object-oriented model to support healthcare facility information management, Autom. Constr., 31, 281–291 (2013) [Google Scholar]
  12. A. Akcamete, B. Akinci, J.H. Garrett Jr., Potential utilization of building models for planning maintenance activities, Proceedings of the International Conference on Computing in Civl and Building Engineering (ICCCBE) (Nottingham, Britain, 2010) [Google Scholar]
  13. I. Motawa, A. Almarshad, A knowledge-based BIM system for building maintenance, Autom. Constr., 29, 173–182 (2013) [Google Scholar]
  14. Z.-Z. Hu, X.-X. Chen, J.-P. Zhan, X.-W. Zhang, A BIM-based Research Framework for Monitoring and Management During Operation and Maintenance Period (Moskow, 2012) [Google Scholar]
  15. M.T. Turkaslan-Bulbul, Ö. Akin, Computational support for building evaluation: embedded comissioning model, Autom. Constr., 15, 438–447 (2006) [Google Scholar]
  16. S. Azhar, W. Carlton, D. Olsen, I. Ahmad, Building informationmodeling for sustainable design and LEED rating analysis, Autom. Constr., 20, 217–224 (2011) [Google Scholar]
  17. U. Isikdag, S. Zlatanova, J. Underwood, A BIM-orientedmodel for supporting indoor navigation requirements, Comput. Environ. Urban. Syst., 41, 112–123 (2013) [Google Scholar]
  18. B. Succar, Building information modelling framework: a research and delivery foundation for industry stakeholders, Autom. Constr., 18, 357–375 (2009) [Google Scholar]
  19. N. Gu, K. London, Understanding and facilitating BIMadoption in the AEC industry, Autom. Constr., 19, 988–999 (2010) [Google Scholar]
  20. F. Cheung, J. Rihan, J. Tah, D. Duce, E. Kurul, Early stage multi-level cost estimation for schematic BIM models, Autom. Constr., 27, 67–77 (2012) [Google Scholar]
  21. Z. Shen, R. Issa, Quantitative evaluation of the BIM-assisted construction detailed cost estimates, J. Inf. Technol. Constr. (ITcon), 15, 234–257 (2010) [Google Scholar]
  22. T. Hartmann, H. VanMeerveld, N. Vossebeld, A. Adriaanse, Aligning building information model tools and construction management methods, Autom. Constr., 22, 605–613 (2012) [Google Scholar]
  23. P. Yee, M. Fischer, J. Haymaker, Automated identification of occupant interactions in renovations of occupied buildings, ITcon, 18, 182–213 (2013) [Google Scholar]
  24. D. Donath, T. Thurow, Integrated architectural surveying and planning: methods and tools for recording and adjusting building survey data, Autom. Constr., 16, 19–27 (2007) [Google Scholar]
  25. V. Bazjanac, IFC BIM-Based Methodology for Semi-Automated Building Energy Performance Simulation (Lawrence Berkeley National Laboratory, Berkeley, 2008) [Google Scholar]
  26. J. Zhang, Z.-Z. Hu, BIM- and 4D-based integrated solution of analysis and management for conflicts and structural safety problems during construction: 1. Principles and methodologies, Autom. Constr., 20, 155–166 (2011) [Google Scholar]
  27. R. Sacks, R. Barak, Impact of three-dimensional parametric modeling of buildings on productivity in structural engineering practice, Autom. Constr., 17, 439–449 (2008) [Google Scholar]
  28. S.-I. Lee, J.-S. Bae, Y.S. Cho, Efficiency analysis of set-based design with structural building information modeling (S-BIM) on high-rise building structures, Autom. Constr., 23, 20–32 (2012) [Google Scholar]
  29. M. Murphy, E. McGovern, S. Pavia, Historic building information modelling (HBIM), Struct. Surv., 27, 311–327 (2009) [Google Scholar]
  30. K. Yeh, M. Tsai, S. Kang, On-site building information retrieval by using projection-based augmented reality, J. Comput. Civ. Eng., 26, 342–355 (2012) [Google Scholar]
  31. ISO Standard, ISO 22263:2008-01: Organization of Information About Construction Works — Framework for Management of Project Information, International Standard, (2008) [Google Scholar]
  32. R. Volk, J. Stengel, and F. Schultmann, “Building Information Modeling (BIM) for existing buildings—Literature review and future needs,” Automation in Construction, 38, 109–127 (2014) [Google Scholar]
  33. J. Armesto, I. Lubowiecka, C. Ordonez, F. Rial, FEM modeling of structures based on close range digital photogrammetry, Autom. Constr., 18, 559–569 (2009) [Google Scholar]
  34. F. Remondino, S. El-Hakim, Image-based 3D modelling: a review, Photogramm. Rec., 21, 269–291 (2006) [Google Scholar]
  35. J. Markley, J. Stutzman, E. Harris, Hybridization of photogrammetry and laser scanning technology for as-built 3D CAD models, Conference Publications, 1–10 (2008) [Google Scholar]
  36. C.P. Teizer, Leveraging passive RFID technology for construction resource, field mobility and status monitoring in a high-rise renovation project, Autom. Constr., 24, 115 (2012) [Google Scholar]
  37. A. Motamedi, A. Hammad, Lifecycle management of facilities components using radio frequency identification and building information model, J. Inf. Technol. Constr. (ITcon), 14, 238–262 (2009) [Google Scholar]
  38. B. Dominguez, Â. Garcia, F. Feito, Semiautomatic detection of floor topology from CAD architectural drawings, Comput. Aided Des., 44, 367–378 (2010) [Google Scholar]
  39. N. Li, B. Becerik-Gerber, Life-cycle approach for implementing RFID technology in construction: learning from academic and industry use cases, J. Constr. Eng. Manag., 137, 1089–1098 (2011) [Google Scholar]
  40. E. Valero, A. Adan, C. Cerrada, Automatic construction of 3D basic-semantic models of inhabited interiors using laser scanners and RFID sensors, Sensors, 12, 5705–5724 (2012) [Google Scholar]
  41. S. El-Omari, O. Moselhi, Integrating 3D laser scanning and photogrammetry for progress measurement of construction work, Autom. Constr., 18, 1–9 (2008) [Google Scholar]
  42. H. Hajian, B. Becerik-Gerber, Scan to BIM: factors affecting operational and computational errors and productivity loss, Proceedings of the 27th International Symposium on Automation and Robotics in Construction (ISARC) (2010) [Google Scholar]
  43. L. Klein, N. Li, B. Becerik-Gerber, Image-based verification of as-built documentation of operational buildings, Autom. Constr., 21, 161–171 (2012) [Google Scholar]
  44. A. Bhatla, S. Choe, O. Fierro, F. Leite, Evaluation of accuracy of as-built 3D modelling from photos taken by handheld digital cameras, Autom. Constr., 28, 116–127 (2012) [Google Scholar]
  45. L. Barazetti, M. Scaioni, F. Remondino, Orientation and 3D modeling from markerless terrestrial images: combining accuracywith automation, Photogramm. Rec., 25, 356–381 (2010) [Google Scholar]
  46. D. Huber, B. Akinci, A. Adan, E. Anil, B. Okorn, X. Xiong, Methods for automatically modeling and representing as-built building information models, Proceedings of the NSF CMMI Research Innovation Conference (2011) [Google Scholar]
  47. A. Adan, D. Huber, Reconstruction of wall surfaces under occlusion and clutter in 3D indoor environments, Proceedings of 3D Imaging,Modeling, Processing, Visualization and Transmission (3DIMPVT) (Hangzhou, China, 2010) [Google Scholar]
  48. X. Xiong, D. Huber, Using context to create semantic 3D models of indoor environments, Proceedings of the British Machine Vision Conference (BMVC) (2010) [Google Scholar]
  49. C. Clemen, L. Gründig, 3D building information efficiently acquired and managed, Proceedings of the FIG Commissions 5, 6 and SSGA Workshop, Lake Baikal, Listvyanka, Russian Federation, 12–19 (2009) [Google Scholar]
  50. J. Dickinson, A. Pardasani, S. Ahamed, S. Kruithof, A survey of automation technology for realising as-built models of services, Improving construction and use through integrated design, solutions, 365–381 (2009) [Google Scholar]
  51. Y. Arayici, Towards building information modelling for existing structures, Struct. Surv., 26, 210–222 (2008) [Google Scholar]
  52. X. Xiong, A. Adan, B. Akinci, D. Huber, Automatic creation of semantically rich 3D building models from laser scanner data, Autom. Constr., 31, 325–337 (2013) [Google Scholar]
  53. A. Adan, X. Xiong, B. Akinci, D. Huber, Automatic creation of semantically rich 3D building models from laser scanner data, Proceedings of the International Symposium on Automation and Robotics in Construction (ISARC) (2011) [Google Scholar]
  54. J. Frahm, M. Pollefeys, S. Lazebnik, D. Gallup, B. Clipp, R. Raguram, C. Wu, C. Zach, T. Johnson, Fast robust large-scale mapping from video and internet photo collections, ISPRS J. Photogramm. Remote Sens., 65, 538–549 (2010) [Google Scholar]
  55. B. Becerik-Gerber, F. Jazizadeh, G. Kavulya, G. Calis, Assessment of target types and layouts in 3D laser scanning for registration accuracy, Autom. Constr., 20, 649–658 (2011) [Google Scholar]
  56. F. Dai, M. Lu, V. Kamat, Analytical approach to augmenting site photos with 3D graphics of underground infrastructure in construction engineering applications, J. Comput. Civ. Eng., 66–74 (2011) [Google Scholar]
  57. H. Fathi, I. Brilakis, Automated sparse 3D point cloud generation of infrastructure using its distinctive visual features, Adv. Eng. Inform., 25, 760–770 (2011) [Google Scholar]
  58. Y. Furukawa, B. Curless, S. Seitz, R. Szeliski, Reconstructing building interiors from images, Proceedings of the International Conference on Computer Vision (ICCV), 8087 (2009) [Google Scholar]
  59. C. Ordonez, J. Martinez, P. Arias, J. Armesto, Measuring building facades with a low-cost close-range photogrammetry system, Autom. Constr., 19, 742–749 (2010) [Google Scholar]
  60. A. Styliadis, L. Sechidis, Photography-based facade recovery & 3Dmodelling: a CAD application in cultural heritage, J. Cult. Herit., 12, 243–252 (2011) [Google Scholar]
  61. W. Yang, M. Chen, Y. Yen, An application of digital point cloud to historic architecture in digital archives, Adv. Eng. Softw., 42, 690–699 (2011) [Google Scholar]
  62. S.-A. Kim, S. Chin, A.-W. Yoon, T.-H. Shin, Y.-S. Kim, C. Choi, Automated building information modeling system for building interior to improve productivity of BIM-based quantity take-off, 2009 Proceedings of the 26th ISARC, 492–496 (Austin, USA, 2009) [Google Scholar]
  63. V. Singh, N. Gu, X. Wang, A theoretical framework of a BIM-based multidisciplinary collaboration platform, Autom. Constr., 20, 134–144 (2011) [Google Scholar]
  64. M. Golparvar-Fard, J. Bohn, J. Teizer, S. Savarese, F. Pena-Mora, Evaluation of image-based modeling and laser scanning accuracy for emerging automated performance monitoring techniques, Autom. Constr., 20, 1143–1155 (2011) [Google Scholar]
  65. F. Leite, A. Akcamete, B. Akinci, G. Atasoy, S. Kiziltas, Analysis ofmodeling effort and impact of different levels of detail in building information models, Autom. Constr., 20, 601–609 (2011) [Google Scholar]
  66. A. Johnson, R. Hoffman, J. Osborn, M. Hebert, A system for semi-automatic modeling of complex environments, Proceedings of the International Conference on Recent Advances in 3D digital Imaging and Modeling (Ottawa, Canada, 1997) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.