Open Access
E3S Web Conf.
Volume 245, 2021
2021 5th International Conference on Advances in Energy, Environment and Chemical Science (AEECS 2021)
Article Number 01031
Number of page(s) 7
Section Energy Development and Utilization and Energy-Saving Technology Application
Published online 24 March 2021
  1. A. Kojima,; K. Teshima, Kenjiro; Y. Shirai,; T., Miyasaka, “Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells” . J. Am. Chem. Soc, 131, 17, 6050–6051(2009) [Google Scholar]
  2. Giulia Lucarelli, Francesco Di Giacomo, Valerio Zardetto, Mariadriana Creatore & Thomas M. Brown,Efficient light harvesting from flexible perovskite solar cells under indoor white light-emitting diode illumination, Nano Research volume 10, pages 2130–2145(2017) [Google Scholar]
  3. Krzysztof Galkowski, Anatolie Mitioglu, Atsuhiko Miyata, Paulina Plochocka, Oliver Portugall, Giles E. Eperon, Jacob Tse-Wei Wang, Thomas Stergiopoulos, Samuel D. Stranks, Henry J. Snaith and Robin J. Nicholas, Determination of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri-halide perovskite semiconductors† Energy Environ. Sci., 9, 962–970(2016) [Google Scholar]
  4. Xiwen Gong, Ziru Huang, Randy Sabatini, Chih-Shan Tan, Golam Bappi, Grant Walters, Andrew Proppe, Makhsud I. Saidaminov, Oleksandr Voznyy, Shana O. Kelley & Edward H. Sargent, Contactless measurements of photocarrier transport properties in perovskite single crystals,, Nature Communications volume 10, Article number: 1591 (2019) [Google Scholar]
  5. David Kiermasch, Philipp Rieder, Kristofer Tvingstedt, Andreas Baumann & Vladimir Dyakonov, Improved charge carrier lifetime in planar perovskite solar cells by bromine doping, Scientific Reports volume 6, Article number: 39333 (2016) [Google Scholar]
  6. Sining Yun, Yong Qin, Alexander R. Uhl, Nick Vlachopoulos, Min Yin, Dongdong Li, Xiaogang Han and Anders Hagfeldt, new-generation integrated devices based on dye-sensitized and perovskite solar cells, Energy Environ. Sci., 11, 476–526(2018) [Google Scholar]
  7. Tze-Bin Song, Qi Chen, Huanping Zhou, Chengyang Jiang, Hsin HuaWang, Yang (Michael) Yang, Yongsheng Liu, Jingbi You and Yang Yang Perovskite solar cells:film formation and properties J.Mater. Chem. A, 3, 9032[39] 39 (2015) [Google Scholar]
  8. V. Gonzalez-Pedro, E. J. Ju ́arez-P ́erez, W. S. Arsyad, E. M. Barea, F. Fabregat-Santiago, I. Mora-Sero and J. Bisquert, Nano Lett., 14, 888–893. (2014) [CrossRef] [PubMed] [Google Scholar]
  9. C. C. Stoumpos, D. H. Cao, D. J. Clark, J. Young, J. M. Rondinelli, J. I. Jang, J. T. Hupp, M. G. Kanatzidis, Chem. Mater. 28, 2852–2867(2016) [Google Scholar]
  10. B. V. Beznosikov, K. S. Aleksandrov,, Crystallogr. Rep. 45, 792–798(2000) S. N. Ruddlesden, P. Popper, Acta Crystallogr.11, 54–55(1958) R. E. Schaak, T. E. Mallouk, Chem. Mater,14, 1455–1471(.2002) [Google Scholar]
  11. T. M. Koh, V. Shanmugam, J. Schlipf, L. Oesinghaus, P. Müller-Busch-baum, N. Ramakrishnan, V. Swamy, N. Mathews, P. P. Boix, S. G. Mhaisal-kar, Adv. Mater, 28, 3653–3661.(2016) [PubMed] [Google Scholar]
  12. V. Gonzalez-Pedro, E. J. Ju´arez-P´erez, W. S. Arsyad, E. M. Barea, F. Fabregat-Santiago, I. Mora-Sero and J. Bisquert, Nano Lett., 14, 888–893, (2014) [CrossRef] [PubMed] [Google Scholar]
  13. Sha W E, Ren X, Chen L and Choy W C, The efficiency limit of CH3NH3PbI3 perovskite solar cells Appl. Phys. Lett. 106221104 (2015) [Google Scholar]
  14. Li W, Liu J, Bai F-Q, Zhang H-X and Prezhdo O V Hole trapping by iodine interstitial defects decreases free carrier losses in perovskite solar cells: a time-domain ab initio study, ACS Energy Lett. 2, 1270–8(2017) [Google Scholar]
  15. Srimath Kandada A R et al Nonlinear carrier interactions in lead halide perovskites and the role of defects JACS, 138, 13604–11(2016) [Google Scholar]
  16. Shao Y, Xiao Z, Bi C, Yuan Y and Huang J Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3planar heterojunction solar cells Nat. Commun. 5, 5784(2014) [Google Scholar]
  17. Sherkar T S, Momblona C, Gil-Escrig L, Bolink H J and Koster L J A Improving perovskite solar cells: Insights from a validated device model Adv. Energy Mater. 7, 1602432(2017) [Google Scholar]
  18. X.X. Wu, M.T. Trinh, D. Niesner, H.M. Zhu, Z. Norman, J.S. Owen, O. Yaffe, J. Kudisch, X.Y. Zhu, Trap states in lead iodide perovskites, J. Am. Chem. Soc. 137 2089e2096(2015) [Google Scholar]
  19. A.D. McNaught, A. Wilkinson, Compendium of Chemical Terminology, (1997) [Google Scholar]
  20. Passivation(chemistry),,(Accessed 13 November 2017) [Google Scholar]
  21. Noel N K, Abate A, Stranks S D, Parrott E S, Burlakov V M, Goriely A and Snaith H J Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic–inorganic lead halide perovskites ACS nano, 8, 9815–21(2014) [Google Scholar]
  22. Jain S M, Qiu Z, Häggman L, Mirmohades M, Johansson M B, Edvinsson T and Boschloo G Frustrated Lewis pair-mediated recrystallization of CH3NH3PbI3for improved optoelectronic quality and high voltage planar perovskite solar cells Energy Environ. Sci. 9, 3770–82(2016) [Google Scholar]
  23. Yang G, Qin P, Fang G and Li G A Lewis Base-Assisted Passivation Strategy Towards Highly Efficient and Stable Perovskite Solar Cells Sol. RRL 21800055(2018) [Google Scholar]
  24. Abate A, Saliba M, Hollman D J, Stranks S D, Wojciechowski K, Avolio R, Grancini G, Petrozza A and Snaith H J Supramolecular halogen bond passivation of organic–inorganic halide perovskite solar cells Nano Lett. 14, 3247–54 (2014) [CrossRef] [PubMed] [Google Scholar]
  25. Abate A, Biella S, Cavallo G, Meyer F, Neukirch H, Metrangolo P, Pilati T, Resnati G and Terraneo G Halide anions driven self-assembly of haloperfluoroarenes: Formation of one-dimensional non-covalent copolymers J. Fluorine Chem. 1301171–7 (2009) [Google Scholar]
  26. A. Abate, M. Saliba, D.J. Hollman, S.D. Stranks, K. Wojciechowski, R. Avolio, G. Grancini, A. Petrozza, H.J. Snaith, Supramolecular halogen bond passivation of organic-inorganic halide perovskite solar cells, Nano Lett. 14, 3247–3254. (2014) [CrossRef] [PubMed] [Google Scholar]
  27. N.K. Noel, A. Abate, S.D. Stranks, E.S. Parrott, V.M. Burlakov, A. Goriely, H.J. Snaith, Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic inorganic lead halide perovskites, ACS Nano 8 9815e9821. (2014) [Google Scholar]
  28. Y.H. Shao, Z.G. Xiao, C. Bi, Y.B. Yuan, J.S. Huang, Origin and elimination of photocurrent hysteresis by fullerene passivation in CH 3 NH 3 PbI 3 planar heterojunction solar cells, Nat. Commun. 5 5784(2014) [Google Scholar]
  29. Pengjun Zhao, Byeong Jo Kim, Hyun Suk Jung Passivation in perovskite solar cells: A review Materialstoday Energy, 7, 267--286(2018) [Google Scholar]
  30. T. Supasai, N. Rujisamphan, K. Ullrich, A. Chemseddine, T. Dittrich, Formation of a passivating CH 3 NH 3 PbI 3 /PbI 2 interface during moderate heating of CH 3 NH 3 PbI 3 layers, Appl. Phys. Lett. 103 183906(2013) [Google Scholar]
  31. Q. Chen, H.P. Zhou, T.B. Song, S. Luo, Z.R. Hong, H.S. Duan, L.T. Dou, Y.S. Liu, Y. Yang, Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells, Nano Lett. 14 4158e4163(2014) [Google Scholar]
  32. Q. Jiang, L.Q. Zhang, H.L. Wang, X.L. Yang, J.H. Meng, H. Liu, Z.G. Yin, J.L. Wu, X.W. Zhang, J.B. You, Enhanced electron extraction using SnO 2 for high-efficiency planar-structure HC(NH 2 ) 2 PbI 3 -based perovskite solar cells, Nat. Energy 2 1–7, (2017) [Google Scholar]
  33. P. Cui, D. Wei, J. Ji, D. Song, Y. Li, X. Liu, J. Huang, T. Wang, J. You, M. Li, Highly efficient electron-selective layer free perovskite solar cells by constructing effective pen heterojunction, Solar RRL 1 1600027, (2017) [Google Scholar]
  34. M.L. Petrus, Y.H. Hu, D. Moia, P. Calado, A.M.A. Leguy, P.R.F. Barnes, P. Docampo, The influence of water vapor on the stability and processing of hybrid perovskite solar cells made from non-stoichiometric precursor mixtures, ChemSusChem 9, 2699–2707. (2016) [PubMed] [Google Scholar]
  35. W.N. Peng, B. Anand, L.H. Liu, S. Sampat, B.E. Bearden, A.V. Malko, Y.J. Chabal, Influence of growth temperature on bulk and surface defects in hybrid lead halide perovskite films, Nanoscale 8 1627e1634. (2016) [Google Scholar]
  36. Y. Lei, L.Y. Gu, W.W. He, Z.X. Jia, X.G. Yang, H.M. Jia, Z. Zheng, Intrinsic charge carrier dynamics and device stability of perovskite/ZnO mesostructured solar cells in moisture, J. Mater. Chem. A 4 5474e5481. (2016) [Google Scholar]
  37. T.J. Jacobsson, J.P. Correa-Baena, E.H. Anaraki, B. Philippe, S.D. Stranks, M.E.F. Bouduban, W. Tress, K. Schenk, J. Teuscher, J.E. Moser, H. Rensmo, A. Hagfeldt, Unreacted PbI 2 as a double-edged sword for enhancing the performance of perovskite solar cells, J. Am. Chem. Soc. 138 10331e10343. (2016) [Google Scholar]
  38. F.Z. Liu, Q. Dong, M.K. Wong, A.B. Djurisic, A.N. Ng, Z.W. Ren, Q. Shen, C. Surya, W.K. Chan, J. Wang, A.M.C. Ng, C.Z. Liao, H.K. Li, K.M. Shih, C.R. Wei, H.M. Su, J.F. Dai, Is excess PbI 2 beneficial for perovskite solar cell performance? Adv. Energy Mater. 6 1502206. (2016) [Google Scholar]
  39. F.Y. Jiang, Y.G. Rong, H.W. Liu, T.F. Liu, L. Mao, W. Meng, F. Qin, Y.Y. Jiang, B.W. Luo, S.X. Xiong, J.H. Tong, Y. Liu, Z.F. Li, H.W. Han, Y.H. Zhou, Synergistic effect of PbI 2 passivation and chlorine inclusion yielding high open-circuit voltage exceeding 1.15 V in both mesoscopic and inverted planar CH 3 NH 3 PbI 3 (Cl)-based perovskite solar cells, Adv. Funct. Mater. 26 8119e8127. (2016) [Google Scholar]
  40. S.M. Wang, W.W. Dong, X.D. Fang, Q.L. Zhang, S. Zhou, Z.H. Deng, R.H. Tao, J.Z. Shao, R. Xia, C. Song, L.H. Hu, J. Zhu, Credible evidence for the passivation effect of remnant PbI 2 in CH 3 NH 3 PbI 3 films in improving the performance of perovskite solar cells, Nanoscale 8 6600e6608. (2016) [Google Scholar]
  41. T.Y. Zhang, N.J. Guo, G. Li, X.F. Qian, Y.X. Zhao, A controllable fabrication of grain boundary PbI 2 nanoplates passivated lead halide perovskites for high performance solar cells, Nano Energy 26 50e56. (2016) [Google Scholar]
  42. Z.M. Zhou, Z.W. Wang, Y.Y. Zhou, S.P. Pang, D. Wang, H.X. Xu, Z.H. Liu, N.P. Padture, G.L. Cui, Methylamine-gas-induced defect-healing behavior of CH 3 NH 3 PbI 3 thin films for perovskite solar cells, Angew. Chem. Int. Ed. 54 9705e9709. (2015) [Google Scholar]
  43. B.S. Tosun, H.W. Hillhouse, Enhanced carrier lifetimes of pure iodide hybrid perovskite via vapor-equilibrated Re-Growth (VERG), J. Phys. Chem. Lett. 6 2503e2508. (2015) [Google Scholar]
  44. Q. Wang, Q. Dong, T. Li, A. Gruverman, J. Huang, Thin insulating tunneling contacts for efficient and water-resistant perovskite solar cells, Adv. Mater. 28 6734e6739. (2016) [Google Scholar]
  45. H. Deng, X.K. Yang, D.D. Dong, B. Li, D. Yang, S.J. Yuan, K.K. Qiao, Y.B. Cheng, J. Tang, H.S. Song, Flexible and semitransparent organolead triiodide perovskite network photodetector arrays with high stability, Nano Lett. 15 7963e7969.v [Google Scholar]
  46. J. Li, J.J. Si, L. Gan, Y. Liu, Z.Z. Ye, H.P. He, Simple approach to improving the amplified spontaneous emission properties of perovskite films, ACS Appl. Mater. Inter. 8 32978e32983. (2016) [Google Scholar]
  47. S. Kumar, A. Dhar, Accelerated thermal-aging-induced degradation of organometal triiodide perovskite on ZnO nanostructures and its effect on hybrid photovoltaic devices, ACS Appl. Mater. Inter. 8 18309e18320 (2016) [Google Scholar]
  48. B. Chaudhary, A. Kulkarni, A.K. Jena, M. Ikegami, Y. Udagawa, H. Kunugita, K. Ema, T. Miyasaka, Poly(4-Vinylpyridine)-based interfacial passivation to enhance voltage and moisture stability of lead halide perovskite solar cells, ChemSusChem 10 2473e2479, (2017) [Google Scholar]
  49. L.J. Zuo, H.X. Guo, D.W. deQuilettes, S. Jariwala, N. De Marco, S.Q. Dong, R. DeBlock, D.S. Ginger, B. Dunn, M.K. Wang, Y. Yang, Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells, Sci. Adv. 3, e1700106.(2017) [PubMed] [Google Scholar]
  50. X. Huang, H. Guo, K. Wang, X.B. Liu, Ionic liquid induced surface trap-state passivation for efficient perovskite hybrid solar cells, Org. Electron. 41 42e48. (2017) [Google Scholar]
  51. :mojtaba abdi-Jalebi, Zahra andaji-Garmaroudi, Stefania cacovich, camille Stavrakas, Bertrand Philippe Johannes m. richter, mejd alsari, Edward P. Booker, Eline m. hutter, Andrew J. Pearson, Samuele Lilliu, Tom J. Savenije, håkan rensmo, Giorgio Divitini, caterina Ducati, richard h. Friend & Samuel D. Stranks, Maximizing and stabilizing luminescence from halide perovskites with potassium passivation, Nature volume 555, pages497–501(2018) [PubMed] [Google Scholar]
  52. Stranks, S. D. & Snaith, H. J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 10, 391–402 (2015) [CrossRef] [PubMed] [Google Scholar]
  53. deQuilettes, D. W. et al. Photo-induced halide redistribution in organic–inorganic perovskite films. Nat. Commun. 7, 11683 (2016) [Google Scholar]
  54. Mohamad Firdaus Mohamad Noh, Chin Hoong Teh, Rusli Daik, Eng Liang Lim, Chi Chin Yap, Mohd Adib Ibrahim, Norasikin Ahmad Ludin, Abd. Rashid bin Mohd Yusoff, Jin Jang and Mohd Asri Mat Teridi The architecture of the electron transport layer for a perovskite solar cell, J. Mater. Chem. C, ,6, 682–712(2018) [Google Scholar]
  55. M. Abdi-Jalebi, M.I. Dar, A. Sadhanala, S.P. Senanayak, M. Gratzel, R.H. Friend, Monovalent cation doping of CH 3 NH 3 PbI 3 for efficient perovskite solar cells, Jove J. Vis. Exp. 121 55307(2017) [Google Scholar]
  56. S.S. Mali, C.S. Shim, H.K. Park, J. Heo, P.S. Patil, C.K. Hong, Ultrathin atomic layer deposited TiO 2 for surface passivation of hydrothermally grown 1D TiO 2 nanorod arrays for efficient solid-state perovskite solar cells, Chem.Mater. 27 1541e1551(2015) [Google Scholar]
  57. J. Dong, X. Xu, J.J. Shi, D.M. Li, Y.H. Luo, Q.B. Meng, Q. Chen, Suppressing charge recombination in ZnO-nanorod-based perovskite solar cells with atomic-layer-deposition TiO 2, Chin. Phys. Lett. 32 078401(2015) [Google Scholar]
  58. Pengjun Zhao, Byeong Jo Kim, Hyun Suk Jung Passivation in perovskite solar cells: A review Materialstoday Energy, 7,267--286(2018) [Google Scholar]
  59. P.M. Da, M.Y. Cha, L. Sun, Y.Z. Wu, Z.S. Wang, G.F. Zheng, High-performance perovskite photoanode enabled by Ni passivation and catalysis, Nano Lett. 15 3452e3457. (2015) [Google Scholar]
  60. C.W. Wang, S. Yang, X. Chen, T.Y. Wen, H.G. Yang, Surface-functionalized perovskite films for stable photoelectrochemical water splitting, J. Mater. Chem. A 5 910e913(2017) [Google Scholar]
  61. Paul W. M. Blom 1 & Gert-Jan A. H. Wetzelaer, Space-charge-limited electron and hole currents in hybrid organic-inorganic perovskites Mohammad Sajedi Alvar1, Nat Commun; 11:4023.(2020) [Google Scholar]
  62. Shi D et al 2015 Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals Science 347,519–22(2015) [Google Scholar]
  63. Child C 1911 Discharge from hot CaO Physical Review (Series I) 32,492(1911) [Google Scholar]
  64. Liu Z et al Chemical reduction of intrinsic defects in thicker heterojunction planar perovskite solar cells Adv.Mater 29 1606774(2017) [Google Scholar]
  65. Srimath Kandada A R et al Nonlinear carrier interactions in lead halide perovskites and the role of defects JACS 138, 13604–11(2016) [Google Scholar]
  66. Adinolfi Vet a The In - Gap Electronic State Spectrum of Methylammonium Lead Iodide Single - Crystal Perovskites Adv. Mater. 28, 3406–10 (l2016) [PubMed] [Google Scholar]
  67. Zewen Xiao,, a Weiwei Meng, a,b Jianbo Wang, b and Yanfa Yan, Defect Properties the Two-Dimensional (CH3NH3) 2Pb(SCN) 2I2Perovskite: A Density Functional Theory Study, Phys. Chem. Chem. Phys., ,18, 25786–25790(2016) [PubMed] [Google Scholar]
  68. Duan H-S, Zhou H, Chen Q, Sun P, Luo S, Song T-B, Bob B and Yang Y The identification and characterization of defect states in hybrid organic–inorganic perovskite photovoltaics Phys. Chem. Chem. Phys 17 112–6(2015) [PubMed] [Google Scholar]
  69. Xiao Z, Dong Q, Bi C, Shao Y, Yuan Y and Huang J Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement Adv. Mater. 26 6503–9(2014) [PubMed] [Google Scholar]
  70. Shao Y, Xiao Z, Bi C, Yuan Y and Huang J Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells Nat. Commun. 5, 5784 (2014) [Google Scholar]
  71. Li D, Shi J, Xu Y, Luo Y, Wu H and Meng Q Inorganic–organic halide perovskites for new photovoltaic technology Natl. Sci. Rev. 5, 559–76 (2017) [Google Scholar]
  72. I. Hwang, I. Jeong, J. Lee, M.J. Ko, K. Yong, Enhancing stability of perovskite solar cells to moisture by the facile hydrophobic passivation, ACS Appl. Mater. Inter. 7 17330e17336 (2015) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.