Open Access
E3S Web Conf.
Volume 245, 2021
2021 5th International Conference on Advances in Energy, Environment and Chemical Science (AEECS 2021)
Article Number 03013
Number of page(s) 4
Section Chemical Performance Research and Chemical Industry Technology Research and Development
Published online 24 March 2021
  1. C.L. Yuan, C.X. Yan, X.B. Zhao, et al. Research progress of peanut mutants. J. Nucl Agr. Sci. 34, 78-84 (2020) [Google Scholar]
  2. Y. Wang. Comparative advantage of main peanut producing areas in China. Nanjing Agr. Univ. 2013. [Google Scholar]
  3. H.D. Upadhyaya, S.N. Nigam, S. Singh. Evaluation of groundnut core collections to identify sources of tolerance to low temperature at germination. Inter. Crop. Res. Inst. Semi. Arid. Tropis. 14, 165-167 (2001) [Google Scholar]
  4. G.X. Zhao, X. Chen, H.F. Liu, et al. Study on functional components, nutritional value and development and utilization of peanut. Anhui Agr. Sci. Bull. 17, 39-42 (2011) [Google Scholar]
  5. X.K Zhang, F.S. Zhang, D.R. Mao. Advances in studies on manganese poisoning in plants. Progr. Pedol. 22, 13-21 (1994) [Google Scholar]
  6. C.D. Foy. Physiological effects of hydrogen, aluminum, and manganese toxicities in acid soil. Am. Soc. Agron. 12, 57-97 (1984) [Google Scholar]
  7. Y. Xiong, Q.K. Li. Soil of China. Sci. Press. 1987. [Google Scholar]
  8. R. Lucchini, D. Placidi, G. Cagna, et al. Manganese and developmental neurotoxicity. Adv. Neurobiol. 18, 13-34 (2017) [PubMed] [Google Scholar]
  9. P.D. Liu, R. Huang, X. Hu, et al. Physiological responses and proteomic changes reveal insights into Stylosanthes response to manganese toxicity. BMC Plant Biol. 19, 1-21 (2019) [PubMed] [Google Scholar]
  10. R. Hoagland. The water culture methods for growing plants without soil. Calif. Agr. Exp. Stat. Circ. 347, 1-32 (1950) [Google Scholar]
  11. Y. Liu, Y.B. Xue, B.X. Xie, et al. Complex gene regulation between young and old soybean leaves in responses to manganese toxicity. Plant Physiol. Biochem. 155, 231-242 (2020) [PubMed] [Google Scholar]
  12. L.F. Xia, M. Cai, F. Li. Adaptation difference and manganese tolerance pathway of three legumes under manganese toxic stress. Dev. West China. 2, 60-67 (2017) [Google Scholar]
  13. Z.J. Chen, L.L. Sun, P.D. Liu, et al. Malate synthesis and secretion mediated by a manganese-enhanced malate dehydrogenase confers superior manganese tolerance in Stylosanthes guianensis. Plant Physiol. 167, 176-88 (2015) [Google Scholar]
  14. A. Shrestha, A.K. Dziwornu, Y. Ueda, et al. Genome-wide association study to identify candidate loci and genes for Mn toxicity tolerance in rice. PLoS One, 13, e0192116 (2018) [Google Scholar]
  15. F.M. Yu, Y. Li, F.R. Li, et al. The effects of EDTA on plant growth and manganese (Mn) accumulation in polygonum pubescens blume cultured in unexplored soil, mining soil and tailing soil from the pingle Mn mine, China. Ecotox. Environ. Safe. 173, 235-242 (2019) [Google Scholar]
  16. J.F. Shao, N. Yamaji, R.F. Shen, et al. The key to Mn homeostasis in plants: regulation of Mn transporters. Trends Plant Sci. 22, 215-224 (2017) [PubMed] [Google Scholar]
  17. S. Yang, K. Yi, M.M. Chang, et al. Sequestration of Mn into the cell wall contributes to Mn tolerance in sugarcane (Saccharum officinarum L.). Plant Soil, 436, 475-487 (2019) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.