Open Access
E3S Web Conf.
Volume 245, 2021
2021 5th International Conference on Advances in Energy, Environment and Chemical Science (AEECS 2021)
Article Number 03068
Number of page(s) 12
Section Chemical Performance Research and Chemical Industry Technology Research and Development
Published online 24 March 2021
  1. Takahiko, A., Junji, I., Koji, Y., et al. (2004) Enantioselective mannich-type reaction catalyzed by a chiral brønsted acid. J. Angewandte Chemie-International Edition, 43(12): 1566-1568. [Google Scholar]
  2. Stephen, J.C. (2006) Chiral phosphoric acids: powerful organocatalysts for asymmetric addition reactions to imines. J. Angewandte Chemie -International Edition, 45(24): 3909-3912. [Google Scholar]
  3. Dixit, P., Erli, S., Sadiya, R., et al. (2004) Complete field guide to asymmetric BINOL-phosphoate derived brønsted acid and metal catalysis: history and classification by mode of activation; Bronsted acidity, hydrogen bonding, ion pairing, and metal phosphates. J. Chemical Reviews, 114(18): 9047-9153. [Google Scholar]
  4. Bao, J.M., Wulff, W.D., Dominy, J.B., et al. (1996) Synthesis, resolution, and determination of absolute configuration of a vaulted 2, 2’-binaphthol and a vaulted 3, 3’-biphenanthrol (VAPOL). J. Journal of The American Chemical Society, 118(14): 3392-3405. [Google Scholar]
  5. Rahman, A., Lin, X.F. (2018) Development and application of chiral spirocyclic phosphoric acids in asymmetric catalysis. J. Organic & Biomolecular Chemistry, 16(26): 4753-4777. [Google Scholar]
  6. Xu, F.X., Huang, D., Han, C., et al. (2010) SPINOL-Derived phosphoric acids: synthesis and application in enantioselective friedel-crafts reaction of indoles with imines. J. Journal of Organic Chemistry, 75(24): 8677-8680. [Google Scholar]
  7. Huang D, Xu F X, Lin X F, et al. The preparation method and applications of the chiral spirocyclic phosphoric acid: CN102030780A[P]. 2010-10-26. [Google Scholar]
  8. Coric, I., Muller, S., List, B. (2010) Kinetic resolution of homoaldols via catalytic asymmetric transacetalization. J. Journal of The American Chemical Society, 132(49): 17370-17373. [Google Scholar]
  9. Masahiro, Y., Junji, I., Kohei, F., et al. (2007) Chiral brønsted acid catalyzed enantioselective mannich-type reaction. J. Journal of The American Chemical Society, 129(21): 6756-6764. [Google Scholar]
  10. Malakar, S., Sowndarya, S.V.S., Sunoj, R.B. (2018) A quantification scheme for non-covalent interactions in the enantio-controlling transition states in asymmetric catalysis. J. Organic & Biomolecular Chemistry, 16(31): 5643-5652. [Google Scholar]
  11. Huang, D., Xu, F.X., Lin, X.F., et al. (2012) Highly enantioselective pictet-spengler reaction catalyzed by SPINOL-phosphoric acids. J. Chemistry-A European Journal, 18(11): 3148-3152. [Google Scholar]
  12. Seguin, T.J., Lu, T.X., Wheeler, S.E. (2015) Enantioselectivity in catalytic asymmetric fischer indolizations hinges on the competition of π-stacking and CH/π interactions. J. Organic Letters, 17(12): 3066-3069. [Google Scholar]
  13. Varlet, T., Gelis, C., Retailleau, P., et al. (2020) Enantioselective redox-divergent chiral phosphoric acid catalyzed quinone Diels-Alder reactions. J. Angewandte Chemie-International Edition, 59(22): 8491-8496. [Google Scholar]
  14. Zhang, J., Wang, Y.Y., Sun, H., et al. (2020) Enantioselective three-component Ugi reaction catalyzed by chiral phosphoric acid. J. Science China-Chemistry, 63(1): 47-54. [Google Scholar]
  15. Wang, L., Zhong, J.L., Lin, X.F. (2019) Atroposelective phosphoric acid catalyzed three-component cascade reaction: enantioselective synthesis of axially chiral N-Arylindoles. J. Angewandte Chemie-International Edition, 58(44): 15824-15828. [Google Scholar]
  16. Kal-Koshvandi, A.T., Heravi, M.M. (2019) Applications of dainshefsky’s dienes in the asymmetric synthesis of aza-diels-alder reaction. J. Chemical Record, 19(2-3): 550-600. [Google Scholar]
  17. Chen, Z.L., Wang, B.L., Wang, Z.B., et al. (2013) Complex bioactive alkaloid-type polycycles through efficient catalytic asymmetric multicomponent aza-diels-alder reaction of indoles with oxetane as directing group. J. Angewandte Chemie-International Edition, 52(7): 2027-2031. [Google Scholar]
  18. Anas, S., Kagan, H.B. (2009) Routes toward enantiopure 2-substituted indolines: an overview. J. Tetrahedron-Asymmetry, 20(19): 2193-2199. [Google Scholar]
  19. Liu, D.Y., Zhao, G.W., Xiang, L. (2010) Diverse strategies for the synthesis of the indoline scaffold. J. European Journal of Organic Chemistry, 21: 3975-3984. [Google Scholar]
  20. Cheng, P., Huang, N., Jiang, Z.Y., et al. (2008) 1-aryl-tetrahydroisoquinoline analogs as active anti-HIV agents in vitro. J. Bioorganic & Medicinal Chemistry Letters, 18(7): 2475-2478. [Google Scholar]
  21. Scott, J.D., Williams, R.M. (2002) Chemistry and biology of the tetrahydroisoquinoline antitumor antibiotics. Chemical Review, 102(5): 1669-1730. [Google Scholar]
  22. Zhang, Y.J., Feng, J.H., Jia, Y.P., et al. (2011) Development of tetrahydroisoquinoline-based hydroxamic acid derivatives: potent histone deacetylase inhibitors with marked in vitro and in vivo antitumor activities. J. Journal of Medicinal Chemistry, 54(8): 2823-2838. [Google Scholar]
  23. Aper, s S., Pape, r D., Burgermeister, J., et al. (2002) Antiangiogenic activity of synthetic dihydrobenzofuran lignans. J. Journal of Natural Products, 65(5):718-720. [Google Scholar]
  24. Trost, B.M., Thiel, O.R., Tsui, H.C. (2003) Total syntheses of furaquinocin A, B, and E. J. Journal of the American Chemical society, 125(43): 13155-13164. [Google Scholar]
  25. Lachia, M., Moody, C.J. (2008) The synthetic challenge of diazonamide A, a macrocyclic indole bis-oxazole marine natural product. J. Natural Product Reports, 25(2): 227-253. [Google Scholar]
  26. Shen, T., Wang, X.N., Lou, H.X. (2009) Natural stilbenes: an overview. J. Natural Product Reports, 26(7): 916-935. [Google Scholar]
  27. Xiang, W.J., Ma, L., Hu, L.H. (2010) Neolignans and flavonoids from the root bark of illicium henryi. J. Fitoterapia, 81(8): 1228-1231. [Google Scholar]
  28. Feng, W.S., Zang, X.Y., Zheng, X.K., et al. (2010) Two new dihydrobenzofuran lignans from rabdosia lophanthoides (Buch. – Ham. Ex D. Don) hara. J. Journal of Asian natural products research, 12(7): 557-561. [Google Scholar]
  29. Gelis, C., Bekkaye, M., Lebee, C., et al. (2016) Chiral phosphoric acid catalyzed [3+2] cycloaddition and tandem oxidative [3+2] cycloaddition: asymmetric synthesis of substituted 3-aminodihydrobenzofurans. J. Organic Letters, 18(14): 3422-3425. [Google Scholar]
  30. Liang, W.J., Geng, C.A., Zhang, X.M., et al. (2014) (+/-)-Paeoveitol, a pair of new norditerpene enantiomers from Paeonia veitchii. J. Organic Letters, 16(2): 424-427. [Google Scholar]
  31. Liang, W.J., Ma, Y.B., Geng, C.A., et al. (2015) Paeoveitols A-E from Paeonia veitchii. J. Fitoterapia, 106: 36-40. [Google Scholar]
  32. Li, T.Z., Geng, C.A., Yin, X.J., et al. (2017) Catalytic asymmetric total synthesis of (+)- and (-)-paeoveitol via a hetero-Diels-Alder reaction. J. Organic Letters, 19(3): 429-431. [Google Scholar]
  33. Zhang, Y.H., Guo, Y.H., Li Z.L., et al. (2016) Biomimetic total synthesis of paeoveitol. J. Organic Letters, 18(18): 4578-4581. [Google Scholar]
  34. Nakata, T. (2005) Total syntheses of marine polycyclic ethers. J. Chemical Reviews, 105(12): 4314-4347. [Google Scholar]
  35. Inoue, M. (2005) Convergent strategies for syntheses of trans-fused polycyclic ethers. J. Chemical Reviews, 105(12): 4379-4405. [Google Scholar]
  36. Nicolaou, K.C., Frederick, M.O, Aversa, R.J. (2008) The continuing saga of the marine polyether biotoxins. J. Angewandte Chemie-International Edition, 47(38): 7182-7225. [Google Scholar]
  37. Ota, Y., Kondoh, A., Terada, M. (2018) Enantioselective intramolecular nicholas reaction catalyzed by chiral phosphoric Acid: enantioconvergent synthesis of seven-membered cyclic ethers from racemic diols. J. Angewandte Chemie-International Edition, 57(42): 13917-13921. [Google Scholar]
  38. Salae, A.W., Chairerk, O., sukkoet, P., et al. (2017) Antiplasmodial dimeric chalcone derivatives from the roots of Uvaria siamensis. J. Phytochemistry, 135:135-143. [Google Scholar]
  39. Zhai, Y.M., Jiang, K., Qu, S.J., et al. (2016) Structurally diverse stilbene dimers from Gnetum montanum Markgr.: studies on the H-1 chemical shift differences between dimeric stilbene epimers correlating to the relative configurations. J. RSC Advanves, 6(55): 50083-50090 [Google Scholar]
  40. Kumar, S., Deshpande, S., Chandra, V., et al. (2009) Synthesis and biological evaluation of 2, 3, 4-triarylbenzopyran derivatives SERM and therapeutic agent for breast cancer J. Bioorganic & Medicinal Chemistry, 17(19): 6832-6840. [Google Scholar]
  41. You, Y., Li, T.T., Yuan, S.P., et al. (2020) Catalytic asymmetric [4+2] cycloaddition of 1-((2-aryl)vinyl)naphthalen-2-ols with in situ generated ortho-quinone methides for the synthesis of polysubstituted chromanes. J. Chemical Communications, 56(3): 439-442. [Google Scholar]
  42. Feng, S., Yang, B., Chen, T., et al. (2020) Catalytic asymmetric [4 + 2] cycloaddition of ortho-alkenyl naphthols/phenols with ortho-quinone methides: highly stereoselective synthesis of chiral 2, 3, 4-trisubstituted chromans. J. The Journal of organic chemistry, 85(8): 5231-5244. [Google Scholar]
  43. Cacchi, S., Fabrizi, G. (2005) Synthesis and functionalization of Indoles through palladium-catalyzed reactions. J. Chemical Reviews, 105(7):2873-2920. [Google Scholar]
  44. Somei, M., Yamada, F. (2004) Simple indole alkaloids and those with nonrearranged monoterpenoid unit. J. Natural roduct Reports. 21(2): 278-311. [Google Scholar]
  45. O’connor, S.E., Maresh, J.J. (2006) Chemistry and biology of monoterpene indole alkaloid biosynthesis. J. Natural Product Reports, 23(4): 532-547. [Google Scholar]
  46. Humphrey, G.R., Kuethe, J.T. (2006) Practical methodologies for the synthesis of indoles. J. Chemical Reviews, 106(7): 2875-2911. [Google Scholar]
  47. Chen, Y.C., Xie, Z.F. (2012) Research progress in friedel-crafts reaction of indoles and imines. J. Chinese Journal of Organic Chemistry, 32(3): 462-471. [Google Scholar]
  48. Fang, L., Tian, S.M., Zhou, J., et al. (2016) Melaxillines A and B, monoterpenoid indole alkaloids from melodinus axillaris. J. Fitoterapia, 115: 173-176. [Google Scholar]
  49. Long, S.Y., Li, C.L., Hu, J., et al. (2018) Indole alkaloids from the aerial parts of Kopsia fruticosa and their cytotoxic, antimicrobial and antifungal activities. J. Fitoterapia, 129: 145-149. [Google Scholar]
  50. Wan, Y.C., Li, Y.H., Yan, C.X., et al. (2019) Indole: A privileged scaffold for the design of anti-cancer agents. J. European Journal of Medicinal Chemistry, 183, 111691. [Google Scholar]
  51. Ciulla, M.G., Kumar, K. (2018) The natural and synthetic indole weaponry against bacteria. J. Tetrahedron Letters, 59(34): 3223-3233. [Google Scholar]
  52. Kawasaki, T., Higuchi, K. (2005) Simple indole alkaloids and those with a nonrearranged monoterpenoid unit. J. Natural Product Reports, 22(6): 761-793. [Google Scholar]
  53. Inman, W.D., Bray, W.M., Gassner, N.C., et al. (2010) A beta-Carboline alkaloid from the papua new guinea marine sponge hyrtios reticulatus. J. Journal of Natural Products, 73(2): 255-257. [Google Scholar]
  54. Benrley, K.W. (2004) Beta-phenylethylamines and the isoquinoline alkaloids. J. Natural Product Repports, 21(3): 395-424. [Google Scholar]
  55. Guang, H.J., Chen, H.S., Peng, W.L., et al. (2006) Design of beta-carboline derivatives as DNA-targeting antitumor agents. J. European Journal of Medicinal Chemistry, 41(10): 1167-1179. [Google Scholar]
  56. Boursereau, Y., Coldham, I. (2004) Synthesis and biological studies of 1-amino beta-carbolines. J. Bioorganic & Medicinal Chemistry Letters, 14(23): 5841-5844. [Google Scholar]
  57. Liu, F., Yu, L.Q., Jiang, C., et al. (2010) Discovery of tetrahydro-beta-carbolines as inhibitors of the mitotic kinesin KSP. J. Bioorganic & Medicinal Chemistry Letters, 18(12): 4167-4177. [Google Scholar]
  58. Xie, E., Rahman, A., Lin, X.F. (2017) Asymmetric synthesis of CF3- and indole-containing tetrahydro-beta-carbolines via chiral spirocyclic hosphoric acid-catalyzed aza-Friedel-Crafts reaction. J]. Organic Chemistry Frontiers, 4(7): 1407-1410. [Google Scholar]
  59. Glavac, D., Zheng, C., Dokli, I., et al. (2017) Chiral bronsted acid catalyzed enantioselective aza-friedel-crafts reaction of cyclic alpha-diaryl N-acyl imines with indoles. J. Journal of Organic Chemistry, 82(16): 8752-8760. [Google Scholar]
  60. Aranzamendi, E., Sotomayor, N., Lete, E. (2012) Bronsted acid catalyzed enantioselective alpha-amidoalkylation in the synthesis of isoindoloisoquinolines. J. Journal of Organic Chemistry, 77(6): 2986-2991. [Google Scholar]
  61. Yu, X.L., Wang, Y.M., Wu, G.P., et al. (2011) Organocatalyzed enantioselective synthesis of quaternary carbon-containing isoindolin-1-ones. J. European Journal of Organic Chemistry, 16: 3060-3066. [Google Scholar]
  62. Shiri, M. (2012) Indoles in multicomponent processes (MCPs). J. Chemical Reviews, 112(6): 3508-3549. [Google Scholar]
  63. Kochanowska-Karamyan, A.J., Hamann, M.T. (2010) Marine indole alkaloids: potential new drug leads for the control of depression and anxiety. J. Chemical Reviews, 110(8): 4489-4497. [Google Scholar]
  64. Chen, M., Sun, J.W. (2017) Catalytic asymmetric N-alkylation of indoles and carbazoles through 1, 6-conjugate addition of aza-para-quinone methides. J. Angewandte Chemie -International Edition, 56(16): 4583-4587. [Google Scholar]
  65. Galliford, C.V., Scheidt, K.A. (2007) Pyrrolidinyl-spirooxindole natural products as inspirations for the development of potential therapeutic agents. J. Angewandte Chemie -International Edition, 46(46): 8748-8758. [Google Scholar]
  66. Rahman, A., Zhou, Q.X., Lin, X.F. (2018) Asymmetric organocatalytic synthesis of chiral 3, 3-disubstituted oxindoles via a 1, 6-conjugate addition reaction. J. Organic & Biomolecular Chemistry, 16(29): 5301-5309. [Google Scholar]
  67. Cai, L., Zhao, Y.L., Huang, T.K., et al. (2019) Chiral phosphoric-acid- catalyzed regioselective and enantioselective C7-friedel-crafts alkylation of 4-aminoindoles with trifluoromethyl ketones. J. Organic Letters, 21(10): 3538-3542. [Google Scholar]
  68. Fu, A.P., Meng, W., Li, H.L., et al. (2014) A density functional study of chiral phosphoric acid-catalyzed direct arylation of trifluoromethyl ketone and diarylation of methyl ketone: reaction mechanism and the important role of the CF3 group. J. Organic & Biomolecular Chemistry, 12(12): 1908-1918. [Google Scholar]
  69. Muller, S., Webber, M.J., List, B. (2011) The catalytic asymmetric fischer indolization. J. Journal of The American Chemical society, 133(46): 18534-18537. [Google Scholar]
  70. Huang, D., Xu, F.X., Lin, X.F., et al. (2012) Highly enantioselective pictet-spengler reaction catalyzed by SPINOL-phosphoric acids. J. Chemisry-A European Journal, 18(11): 3148-3152. [Google Scholar]
  71. Xu, B., Zhu, S.F., Xie, X.L., et al. (2011) Asymmetric N-H insertion reaction cooperatively catalyzed by rhodium and chiral spiro phosphoric acis. J. Angewandte Chemie -International Edition, 50(48): 11483-11486. [Google Scholar]
  72. Kisan, H.K., Sunoj, R.B. (2014) Deciphering the origin of cooperative catalysis by dirhodium acetate and chiral spiro phosphoric acid in an asymmetric amination reaction. J. Chemical Communications, 50(93): 14639-14642. [Google Scholar]
  73. Zhang, Y.L., Yao, Y., He, L., et al. (2017) Rhodium(II)/chiral phosphoric acid-cocatalyzed enantioselective O-H bond insertion of alpha-diazo esters. J. Advances Synthesis & Catalysis, 359(16): 2754-2761. [Google Scholar]
  74. Shen, M.L., Shen, Y., Wang, P.S. (2019) Merging visible-light photoredox and chiral phosphate catalysis for asymmetric friedel-crafts reaction with in situ generation of N-acyl lmines. J. Organic Letters, 21(9): 2993-2997. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.