Open Access
E3S Web Conf.
Volume 245, 2021
2021 5th International Conference on Advances in Energy, Environment and Chemical Science (AEECS 2021)
Article Number 03069
Number of page(s) 6
Section Chemical Performance Research and Chemical Industry Technology Research and Development
Published online 24 March 2021
  1. Butterman, W.; Reese, R. G., Mineral Commodity Profiles, Rubidium[R]. US Geological Survey: 2003, 3–11. [Google Scholar]
  2. Liao Yuanshuang, Yang Dajin. Resources, application and extraction technology status of rubidium[J]. Yunnan Metallurgy. 2012. 40(4): 27-30. [Google Scholar]
  3. Niu Huixian. Research and application prospects of the preparation technology of rubidium and its compounds[J]. Rare metals. 2006. 30(4):523-527. [Google Scholar]
  4. Sheng Dingjie, Zhang Mingsen, etc. Research progress in rubidium extraction technology[J]. Salt Industry and Chemical Industry. 2011. 40(1):44-47. [Google Scholar]
  5. Liao Yuanshuang, Yang Dajin. The effect of rubidium alkali metal rubidium on the performance of o-xylene to phthalic anhydride catalyst[J]. Acta Petrolei Sinica: Petroleum Processing 2001, 17 (5), 36-40. [Google Scholar]
  6. Chen Zhenxing, Fang Zhonghe, Huang Caijuan, Ye Hua, Liu Jin, Preparation of cesium-rubidium-vanadium series low-temperature sulfuric acid catalyst[J]. Chinese Journal of Catalysis 2000, 21(4), 384-386. [6] Ostaszyński, A., Wielgat, J., Urbański, T., Michael addition reaction in the presence of potassium and rubidium fluorides as catalysts[J]. Tetrahedron 1969, 25(9), 1929-1938. [Google Scholar]
  7. Zhu Tun, Solvent extraction and ion exchange [M]. Beijing: Metallurgical Industry Press: 2005. [Google Scholar]
  8. Sheng Huayu, Extraction Chemistry of Potassium, Rubidium and Cesium[J]. Organic Chemistry. 1979.1(1), 118-147. [Google Scholar]
  9. Wagner, F.S., Kirk-Othmer encyclopedia of chemical technology[M]: New York, Wiley & Sons, 2004, 591-600. [Google Scholar]
  10. Lin, Y. T.; Tang, Q. Distribution of Brine in Sichuan Basin and Its Prospects for Tapping. Geol. Chem. Miner[J]. 1999, 21, 209−214. [Google Scholar]
  11. Lu Zhi, Research on separation and extraction technology of rubidium from marine deep brine in Pingluoba structure[D]. Chengdu University of Technology, 2011. [Google Scholar]
  12. Shi-ming Liu; He-hui Liu; Yun-jing Huang; Wei-jun Yang, Solvent extraction of rubidium and cesium from salt lake brine with t-BAMBP–kerosene solution[J]. Transactions of Nonferrous Metals Society of China. 2015, 25(1), 329-334. [Google Scholar]
  13. Zhenghua Feng, Lianying An, Zhenggen Huang. Catalytic synthesis of 4-methyl-2-(α-methyl benzyl) phenol over Fe-Al-MCM-41 for extraction separation between rubidium and potassium [J]. Acadmia Romana. 2020, 65(2): 145-147. [Google Scholar]
  14. He X, Antonelli D. Recent advances in synthesis and applications of transition metal containing mesoporous molecular sieves[J]. Angew. Chem. Int. Ed., 2002, 41(2): 214 ~ 229. [Google Scholar]
  15. Gunnewegh E A, Gopie S S, Bekkum H V. MCM-41 type molecular sieves as catalysts for the Friedel-Crafts acyltion of 2-metheoxynaphthalene[J]. J. Mol. Catal. A: Chem., 1996, 106(1-2): 151~158 [Google Scholar]
  16. Hulea V, Fajula F. Ni-exchanged A1-MCM-41 an efficient bifunctional catalyst for ethylene oligomerization[J]. J. Catal., 2004, 225(1): 213~222. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.