Open Access
Issue
E3S Web Conf.
Volume 246, 2021
Cold Climate HVAC & Energy 2021
Article Number 03005
Number of page(s) 6
Section Renewable Energy Production
DOI https://doi.org/10.1051/e3sconf/202124603005
Published online 29 March 2021
  1. S. A. Kalogirou, S. Karellas, K. Braimakis, C. Stanciu, and V. Badescu, “Exergy analysis of solar thermal collectors and processes,” Progress in Energy and Combustion Science. 2016, doi: 10.1016/j.pecs.2016.05.002. [Google Scholar]
  2. S. Suman, M. K. Khan, and M. Pathak, “Performance enhancement of solar collectors - A review,” Renewable and Sustainable Energy Reviews. 2015, doi: 10.1016/j.rser.2015.04.087. [Google Scholar]
  3. A. Jamar, Z. A. A. Majid, W. H. Azmi, M. Norhafana, and A. A. Razak, “A review of water heating system for solar energy applications,” International Communications in Heat and Mass Transfer. 2016, doi: 10.1016/j.icheatmasstransfer.2016.05.028. [Google Scholar]
  4. ASHRAE 62.1, “Ventilation for Acceptable Indoor Air Quality,” J. Phys. A Math. Theor., 2016, doi: 10.1088/1751–8113/44/8/085201. [Google Scholar]
  5. Ministério da economia e do emprego, “Decreto-Lei 118/2013,” Diário da República, 2013. [Google Scholar]
  6. E. Z. E. Conceição, M. M. J. R. Lúcio, V. D. S. R. Vicente, and V. C. T. Rosão, “Evaluation of local thermal discomfort in a classroom equipped with cross flow ventilation,” Int. J. Vent., 2008, doi: 10.1080/14733315.2008.11683817. [Google Scholar]
  7. P. Ole Fanger, “Thermal comfort. Analysis and applications in environmental engineering.,” Copenhagen Danish Tech. Press, 1970. [Google Scholar]
  8. ISO, “ISO 7730: Ergonomics of the thermal environment Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria,” Management, 2005, doi: 10.1016/j.soildyn.2004.11.005. [Google Scholar]
  9. ASHRAE-55, “Thermal environmental conditions for human occupancy,” ANSI/ASHRAE Stand. - 55, 2017. [Google Scholar]
  10. E. Z. E. Conceição and M. M. J. R. Lúcio, “Numerical study of the influence of opaque external trees with pyramidal shape on the thermal behaviour of a school building in summer conditions,” Indoor Built Environ., vol. 19, no. 6, 2010, doi: 10.1177/1420326X10377546. [Google Scholar]
  11. E. Z. E. Conceição and M. M. J. R. Lúcio, “Numerical study of the thermal efficiency of a school building with complex topology for different orientations,” Indoor Built Environ., vol. 18, no. 1, 2009, doi: 10.1177/1420326X08099550. [Google Scholar]
  12. E. Z. E. Conceição, J. M. M. Gomes, and A. E. Ruano, “Application of HVAC Systems with Control Based on PMV Index in University Buildings with Complex Topology,” IFAC-PapersOnLine, vol. 51, no. 10, 2018, doi: 10.1016/j.ifacol.2018.06.230. [Google Scholar]
  13. E. Z. E. Conceição, A. R. L. Nunes, J. M. M. Gomes, and M. J. R. Lúcio, “Application of a school building thermal response numerical model in the evolution of the adaptive thermal comfort level in the Mediterranean environment,” Int. J. Vent., vol. 9, no. 3, 2010, doi: 10.1080/14733315.2010.11683887. [Google Scholar]
  14. E. Z. E. Conceição, M. M. J. R. Lúcio, A. E. B. Ruano, and E. M. Crispim, “Development of a temperature control model used in HVAC systems in school spaces in Mediterranean climate,” Build. Environ., vol. 44, no. 5, 2009, doi: 10.1016/j.buildenv.2008.06.015. [Google Scholar]
  15. N. C. Balaji, M. Mani, and B. V. Venkatarama Reddy, “Thermal performance of the building walls,” 2013. [Google Scholar]
  16. L. Yang, H. Yan, and J. C. Lam, “Thermal comfort and building energy consumption implications - A review,” Applied Energy. 2014, doi: 10.1016/j.apenergy.2013.10.062. [PubMed] [Google Scholar]
  17. D. J. Sailor, “A green roof model for building energy simulation programs,” Energy Build., 2008, doi: 10.1016/j.enbuild.2008.02.001. [Google Scholar]
  18. E. Z. E. Conceição, M. M. J. R. Lúcio, and H. B. Awbi, “Comfort and airflow evaluation in spaces equipped with mixing ventilation and cold radiant floor,” Build. Simul., vol. 6, no. 1, 2013, doi: 10.1007/s12273–012–0093–4. [Google Scholar]
  19. E. Z. E. Conceição and M. M. J. R. Lúcio, “Numerical simulation of the application of solar radiant systems, internal airflow and occupants’ presence in the improvement of comfort in winter conditions,” Buildings, vol. 6, no. 3, 2016, doi: 10.3390/buildings6030038. [Google Scholar]
  20. E. Z. E. Conceição and M. Lúcio, “Numerical and subjective responses of human thermal sensation,” Proc. BioEng, 2001. [Google Scholar]
  21. E. Z. E. Conceição, “Evaluation of thermal comfort and local discomfort conditions using the numerical modelling of the human and clothing thermal system,” in RoomVent’2000–7th International Conference on Air Distribution in Rooms, 2000, pp. 131–136. [Google Scholar]
  22. E. Z. E. Conceição, S. P. Rosa, A. L. V. Custódio, R. L. Andrade, M. J. P. A. Meira, and M. M. J. R. Lúcio, “Study of airflow around occupants seated in desks equipped with upper and lower air terminal devices for slightly warm environments,” HVAC R Res., vol. 16, no. 4, 2010, doi: 10.1080/10789669.2010.10390912. [Google Scholar]
  23. E. Z. E. Conceição, M. Lúcio, and J. P. Farinho, “Experimental and numerical study of personalized of ventilation in classrooms desks,” in Proceedings of the 10th International Conference in Rooms, Room Vent, Helsinki, Finland, 2007, pp. 13–15. [Google Scholar]
  24. C. Ekici, “A review of thermal comfort and method of using Fanger’s PMV equation,” 2013. [Google Scholar]
  25. K. Fabbri, “Thermal comfort evaluation in kindergarten: PMV and PPD measurement through datalogger and questionnaire,” Build. Environ., 2013, doi: 10.1016/j.buildenv.2013.07.002. [Google Scholar]
  26. A. Pourshaghaghy and M. Omidvari, “Examination of thermal comfort in a hospital using PMV-PPD model,” Appl. Ergon., 2012, doi: 10.1016/j.apergo.2012.03.010. [Google Scholar]
  27. E. Z. E. Conceição, M. C. G. Da Silva, J. C. S. André, and D. X. Viegas, “Thermal behaviour simulation of the passenger compartment of vehicles,” Int. J. Veh. Des., vol. 24, no. 4, 2000, doi: 10.1504/IJVD.2000.005199. [Google Scholar]
  28. E. Z. E. Conceição and M. M. J. R. Lúcio, “Numerical simulation of passive and active solar strategies in buildings with complex topology,” Build. Simul., vol. 3, no. 3, 2010, doi: 10.1007/s12273–010–0010–7. [Google Scholar]
  29. E. Conceição, A. Silva, and M. Lúcio, “Numerical study of thermal response of school buildings in winter conditions,” In Proceedings of the 9th Conference on Air Distribution in Rooms (Roomvent 2004), Coimbra, Portugal, September 5–8, 2004 [Google Scholar]
  30. E. Conceição and M. Lúcio, “Numerical study of thermal response of school buildings in summer conditions,” In Proceedings of the 8th International Conference and Exhibition on Healthy Buildings (HB 2006), Lisbon, Portugal, June 4–8, 2006. [Google Scholar]
  31. Portaria n. 353-A/2013, “Regulamento de Desempenho Energético dos Edifícios de Comércio e Serviços (RECS) - Requisitos de Ventilação e Qualidade do Ar Interior,” Diário da República. 2013. [Google Scholar]
  32. S. A. Kalogirou, “Solar thermal collectors and applications,” Progress in Energy and Combustion Science. 2004, doi: 10.1016/j.pecs.2004.02.001. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.