Open Access
Issue
E3S Web Conf.
Volume 246, 2021
Cold Climate HVAC & Energy 2021
Article Number 10002
Number of page(s) 8
Section Performance Assessment and Characterization
DOI https://doi.org/10.1051/e3sconf/202124610002
Published online 29 March 2021
  1. R. M. Werner and L. A. Clarenburg, “Aerosol filters: Pressure Drop across Single-Component Glass Fiber Filters,” Ind. Eng. Chem. Process Des. Dev., 1965. [Google Scholar]
  2. G. W. Jackson and D. F. James, “The permeability of fibrous porous media,” Can. J. Chem. Eng., 1986. [Google Scholar]
  3. S. A. Hosseini and H. V. Tafreshi, “Modeling particle filtration in disordered 2-D domains: A comparison with cell models,” Sep. Purif. Technol., 2010. [Google Scholar]
  4. C. Kanaoka and S. Hiragi, “Pressure drop of air filter with dust load,” J. Aerosol Sci., 1990. [Google Scholar]
  5. W. Bergman et al., “Enhanced filteration programm at LLL - a progress report.”, 15th DOE Air Cleaning, 1978. [Google Scholar]
  6. P. Letourneau, P. Mulcey, and J. Vendel, “ Effect of dust loading on the pressure drop and efficiency of hepa filters.,” Filtr. Sep., 1987. [Google Scholar]
  7. Y. Endo, D. R. Chen, and D. Y. H. Pui, “Effects of particle polydispersity and shape factor during dust cake loading on air filters,” Powder Technol., 1998. [Google Scholar]
  8. D. Thomas, P. Contal, V. Renaudin, P. Penicot, D. Leclerc, and J. Vendel, “Modelling pressure drop in HEPA filters during dynamic filtration,” J. Aerosol Sci., 1999. [Google Scholar]
  9. C. Ghiaus, A. Chicinas, and C. Inard, “Grey-box identification of air-handling unit elements,” Control Eng. Pract., 2007. [Google Scholar]
  10. Y. Yao, K. Yang, M. Huang, and L. Wang, “A state-space model for dynamic response of indoor air temperature and humidity,” Build. Environ., 2013. [Google Scholar]
  11. N. Hariharan and B. P. Rasmussen, “Parameter estimation for dynamic HVAC models with limited sensor information,” in Proceedings of the 2010 American Control Conference, ACC 2010, 2010. [Google Scholar]
  12. Y. Yao, M. Huang, and J. Chen, “State-space model for dynamic behavior of vapor compression liquid chiller,” Int. J. Refrig., 2013. [Google Scholar]
  13. M. Siemann, J. Kim, D. Oberholzer, and C. Sloop, “Performance of a residential building energy grey-box model using localized weather networks,” ASHRAE Trans., 2013. [Google Scholar]
  14. J. E. Braun and N. Chaturvedi, “An inverse gray-box model for transient building load prediction,” HVAC R Res., 2002. [Google Scholar]
  15. Y. Yao, M. Huang, J. Mo, and S. Dai, “Statespace model for transient behavior of water-toair surface heat exchanger,” Int. J. Heat Mass Transf., 2013. [Google Scholar]
  16. S. Nyika, S. O. Holloway, W. T. Horton, and J. E. Braun, “Generalized performance maps for single- and dual-speed residential heat pumps,” in ASHRAE Conference-Papers, 2014. [Google Scholar]
  17. R. L. Navale and R. M. Nelson, “Use of genetic algorithms and evolutionary strategies to develop an adaptive fuzzy logic controller for a cooling coil - Comparison of the AFLC with a standard PID controller,” Energy Build., 2012. [Google Scholar]
  18. J. Wright and Y. Zhang, “Evolutionary synthesis of HVAC system configurations: Experimental results,” HVAC R Res., 2008. [Google Scholar]
  19. Z. Ma and S. Wang, “Supervisory and optimal control of central chiller plants using simplified adaptive models and genetic algorithm,” Appl. Energy, 2011. [Google Scholar]
  20. H. Moradi, F. Bakhtiari-Nejad, and M. Saffar-Avval, “Multivariable robust control of an airhandling unit: A comparison between poleplacement and H ∞ controllers,” Energy Convers. Manag., 2012. [Google Scholar]
  21. X. Zhang, K. F. Fong, and S. Y. Yuen, “A novel artificial bee colony algorithm for HVAC optimization problems,” HVAC R Res., 2013. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.