Open Access
Issue
E3S Web Conf.
Volume 251, 2021
2021 International Conference on Tourism, Economy and Environmental Sustainability (TEES 2021)
Article Number 02060
Number of page(s) 11
Section Environmental Ecological Analysis and Sustainable Development Research
DOI https://doi.org/10.1051/e3sconf/202125102060
Published online 15 April 2021
  1. Williams H.C., Dellavalle R.P., Garner S.: Acne vulgaris. Lancet (London, England) 2012, 379(9813):361–372. [Google Scholar]
  2. Hao Yan, Zhang Liang, Huang Kangbai, Zhang Xinpu: Discussion on the theoretical basis of pressing needle in the treatment of acne. Journal of Guangxi University of traditional Chinese medicine, 2018, 021 (4): p.53–55 [Google Scholar]
  3. Zhang Ruojun: Etiology and pathogenesis of acne. World’s latest medical information abstracts 2016 (92): 30–32 [Google Scholar]
  4. Hopkins A.L.: Network pharmacology: the next paradigm in drug discovery. Nature chemical biology 2008, 4(11):682–690. [Google Scholar]
  5. Chen Xiangjun, Liu Jing: Network pharmacology mechanism of Angelica dahurica in treating acne. Journal of Guangzhou University of traditional Chinese medicine, 2019 (10):38–42 [Google Scholar]
  6. Liu Jun: Network pharmacology of Salvia miltiorrhiza in the treatment of acne vulgaris. Guangdong Pharmaceutical University; 2015 [Google Scholar]
  7. Ru J., Li P., Wang J., Zhou W., Li B., Huang C., Li P., Guo Z., Tao W., Yang Y. et al.: TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. Journal of cheminformatics 2014, 6:13. [Google Scholar]
  8. Liu Z., Guo F., Wang Y., Li C., Zhang X., Li H., Diao L., Gu J., Wang W., Li D. et al.: BATMAN-TCM: a Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine. Scientific reports 2016, 6:211–215. [Google Scholar]
  9. Davis A.P., Grondin C.J., Johnson R.J., Sciaky D., McMorran R., Wiegers J., Wiegers T.C., Mattingly C.J.: The Comparative Toxicogenomics Database: update 2019. Nucleic acids research 2019, 47(D1):D948–D954. [Google Scholar]
  10. Szklarczyk D., Franceschini A., Wyder S., Forslund K., Heller D., Huerta-Cepas J., Simonovic M., Roth A., Santos A., Tsafou K.P. et al.: STRING v10: proteinprotein interaction networks, integrated over the tree of life. Nucleic acids research 2015, 43(Database issue):D447–452. [Google Scholar]
  11. Tang Y., Li M., Wang J., Pan Y., Wu F.X.: CytoNCA: a cytoscape plugin for centrality analysis and evaluation of protein interaction networks. Bio Systems 2015, 127:67–72. [Google Scholar]
  12. Kim S., Chen J., Cheng T., Gindulyte A., He J., He S., Li Q., Shoemaker B.A., Thiessen P.A., Yu B. et al.: PubChem 2019 update: improved access to chemical data. Nucleic acids research 2019, 47(D1):D1102–D1109. [Google Scholar]
  13. Xiao Yongmei, Li Ming, Mao Pu, Yuan Jinwei: Research Progress on biological modification and activity of flavonoids. Journal of Henan University of Technology (NATURAL SCIENCE EDITION) 2019, 040 (002): 123–131139 [Google Scholar]
  14. Adamczak A., Oarowski M., Karpinski T.M.: Antibacterial Activity of Some Flavonoids and Organic Acids Widely Distributed in Plants. Journal of Clinical Medicine 2020, 9(1):34–38 [Google Scholar]
  15. Zheng Haiyan, Wang Xiaojie: Discussion on pharmacological action of flavonoids. Chinese Journal of biochemical medicine, 2017 (5):17–20 [Google Scholar]
  16. Lim Y.H., Kim I.H., Seo J.J.: In vitro activity of kaempferol isolated from the Impatiens balsamina alone and in combination with erythromycin or clindamycin against Propionibacterium acnes. Journal of microbiology (Seoul, Korea) 2007, 45(5):473–477. [Google Scholar]
  17. Xia Mingjing, Wu Chenglong, et al. Inhibitory effect of 22 active components of Chinese herbal medicines on Propionibacterium acnes. Chin J dermatol 2001:59–72 [Google Scholar]
  18. Kim S., Oh S., Noh H.B., Ji S., Lee S.H., Koo J.M., Choi C.W., Jhun H.P.: In Vitro Antioxidant and AntiPropionibacterium acnes Activities of Cold Water, Hot Water, and Methanol Extracts, and Their Respective Ethyl Acetate Fractions, from Sanguisorba officinalis L. Roots. Molecules (Basel, Switzerland) 2018, 23(11). [Google Scholar]
  19. Mohamad H., Abas F., Permana D., Lajis N.H., Ali A.M., Sukari M.A., Hin T.Y., Kikuzaki H., Nakatani N.: DPPH free radical scavenger components from the fruits of Alpinia rafflesiana Wall. ex. Bak. (Zingiberaceae). Zeitschrift fur Naturforschung C., Journal of biosciences 2004, 59(11-12):811–815. [Google Scholar]
  20. Lv Q.Q., Yang X.N., Yan D.M., Liang W.Q., Liu H.N., Yang X.W., Li F.: Metabolic profiling of dehydrodiisoeugenol using xenobiotic metabolomics. Journal of pharmaceutical and biomedical analysis 2017, 145:725–733. [Google Scholar]
  21. Murakami Y., Shoji M., Hirata A., Tanaka S., Yokoe I., Fujisawa S.: Dehydrodiisoeugenol, an isoeugenol dimer, inhibits lipopolysaccharide-stimulated nuclear factor kappa B activation and cyclooxygenase-2 expression in macrophages. Archives of biochemistry and biophysics 2005, 434(2):326–332. [Google Scholar]
  22. Sun M., Yang L., Feldman R.I., Sun X.M., Bhalla K.N., Jove R., Nicosia S.V., Cheng J.Q.: Activation of phosphatidylinositol 3-kinase/Akt pathway by androgen through interaction of p85 a, androgen receptor, and Src. The Journal of biological chemistry 2016, 291(43):22841. [Google Scholar]
  23. Ju Q., Tao T., Hu T., Karadag A.S., Al-Khuzaei S., Chen W.: Sex hormones and acne. Clinics in dermatology 2017, 35(2):130–137. [Google Scholar]
  24. Zhang Li, Zhu Qingyi, Wei Yunfei, Yuan Lin, Ma Long, Liu Li, Su Jian, Gu Xiaojian: Effect of quercetin on the expression of VEGF and COX-2 in prostate cancer PC3 cells. New traditional Chinese medicine, 2012, 044 (1): 125–127 [Google Scholar]
  25. Ye T., Zhang C., Wu G., Wan W., Liang J., Liu X., Liu D., Yang B.: Pinocembrin attenuates autonomic dysfunction and atrial fibrillation susceptibility via inhibition of the NF- k B/TNF- a pathway in a rat model of myocardial infarction. International immunopharmacology 2019, 77:105–116. [Google Scholar]
  26. Murakami Y., Shoji M., Hirata A., Tanaka S., Yokoe I., Fujisawa S.: Dehydrodiisoeugenol, an isoeugenol dimer, inhibits lipopolysaccharide-stimulated nuclear factor kappa B activation and cyclooxygenase-2 expression in macrophages. Archives of Biochemistry and Biophysics 2005, 434(2):326–332. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.