Open Access
E3S Web Conf.
Volume 252, 2021
2021 International Conference on Power Grid System and Green Energy (PGSGE 2021)
Article Number 01015
Number of page(s) 5
Section Power Control Technology and Smart Grid Application
Published online 23 April 2021
  1. L. Han, Z. Rongchang, W. Xuesong, J. Huitian, Multi-step wind power forecast based on VMD-. J., LSTIET.Renew.Power.Gener 13, 1690–1700 (2019) [Google Scholar]
  2. S. Zexian, Z. Shenshen, Z. Jingxuan, Short-term wind power forecasting on multiple scales using VMD decomposition, K-Means clustering and LSTM principal computing. J. IEEE.Access 7, 166917–166929 (2019) [Google Scholar]
  3. Y. Zhang, K. Liu, L. Qin, Wind power multi-step interval forecast based on ensemble empirical mode decomposition-sample entropy and optimized extreme learning machine. J. Power.Syst.Technol 40, 2045–2051 (2016) [Google Scholar]
  4. N. Bokdea, A. Feijóob, K. Kulataa, Analysis of differencing and decomposition preprocessing methods for wind speed prediction. J. Appl.Soft.Comput 71, 926–938 (2018) [Google Scholar]
  5. De. Giorgi, S. Campilongo, A. Ficarella, Compari-son between wind power prediction models based on wavelet decomposition with least-squares support vector machine (ls-svm) and artificial neural network (ann). J. Energies 7, 5251–5272 (2014) [Google Scholar]
  6. A. Tascikaraoglu, B. M. Sanandaji, K. Poolla, Exploiting sparsity of interconnections in spatiotemporal wind speed forecasting using wavelet transform. J. Appl. Energy 165, 735–747 (2016) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.