Open Access
Issue
E3S Web Conf.
Volume 252, 2021
2021 International Conference on Power Grid System and Green Energy (PGSGE 2021)
Article Number 02067
Number of page(s) 5
Section Research and Development of Electrical Equipment and Energy Nuclear Power Devices
DOI https://doi.org/10.1051/e3sconf/202125202067
Published online 23 April 2021
  1. CHEN W, LIU X, LI M, et al. On the nature and removal of saw marks on diamond wire sawn multicrystalline silicon wafers[J]. Materials Science in Semiconductor Processing, 2014, 27: 220–227. DOI:10.1016/j.mssp.2014.06.049. [Google Scholar]
  2. SOPORI B, DEVAYAJANAM S, BASNYAT P, et al. Surface damage introduced by diamond wire sawing of si wafers: measuring in-depth and the lateral distributions for different cutting parameters[J]. MRS Online Proceedings Library, 2015, 1770(1): 61–66. DOI:10.1557/opl.2015.830. [Google Scholar]
  3. YOO J, YU G, YI J. Large-area multicrystalline silicon solar cell fabrication using reactive ion etching (rie)[J]. Solar Energy Materials and Solar Cells, 2011, 95(1): 2–6. DOI:10.1016/j.solmat.2010.03.029. [Google Scholar]
  4. DING J, ZOU S, CHOI J, et al. A laser texturing study on multi-crystalline silicon solar cells[J]. Solar Energy Materials and Solar Cells, 2020, 214: 110587. DOI:10.1016/j.solmat.2020.110587. [Google Scholar]
  5. LU W, QIU X, ZHAO Q, et al. Enhanced optoelectronic conversion in diamond-wire sawing multi-crystalline silicon solar cells through nanotexture-induced photon management[J]. Solar Energy Materials and Solar Cells, 2018, 185: 439–444. DOI:10.1016/j.solmat.2018.06.001. [Google Scholar]
  6. ZHENG C, SHEN H, PU T, et al. , High-efficient solar cells by the ag/cu-assisted chemical etching process on diamond-wire-sawn multicrystalline silicon[J]. IEEE Journal of Photovoltaics, 2017, 7(1): 153–156. DOI:10.1109/JPHOTOV.2016.2631304. [Google Scholar]
  7. CHEN K, ZHA J, HU F, et al. MACE nano-texture process applicable for both single- and multi-crystalline diamond-wire sawn si solar cells[J]. Solar Energy Materials and Solar Cells, 2019, 191: 1–8. DOI:10.1016/j.solmat.2018.10.015. [Google Scholar]
  8. OH J, YUAN H-C, BRANZ H M. An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures: 11[J]. Nature Nanotechnology, 2012, 7(11): 743–748. DOI:10.1038/nnano.2012.166. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.