Open Access
E3S Web Conf.
Volume 252, 2021
2021 International Conference on Power Grid System and Green Energy (PGSGE 2021)
Article Number 03004
Number of page(s) 6
Section Energy Technology Research and Development and Green Energy-Saving Applications
Published online 23 April 2021
  1. Quinn, J.B., et al., Energy Density of Cylindrical Li-Ion Cells: A Comparison of Commercial 18650 to the 21700 Cells. Journal of The Electrochemical Society, 2018. 165(14): p. A3284-A3291. [Google Scholar]
  2. Zafar Abbas Manj, R., et al., Toward understanding the interaction within Silicon-based anodes for stable lithium storage. Chemical Engineering Journal, 2020. 385: p. 123821. [Google Scholar]
  3. Xu, W., et al., Lithium metal anodes for rechargeable batteries. Energy & Environmental Science, 2013. 7: p. 513. [Google Scholar]
  4. Boukamp, B.A., G.C. Lesh, and R.A. Huggins, All-Solid Lithium Electrodes with Mixed-Conductor Matrix. Journal of The Electrochemical Society, 1981. 128(4): p. 725–729. [Google Scholar]
  5. Zhu, C., et al., Achieving High-Performance Silicon Anodes of Lithium-Ion Batteries via Atomic and Molecular Layer Deposited Surface Coatings: an Overview. Electrochimica Acta, 2017. 251: p. 710–728. [Google Scholar]
  6. Shi, F., et al., Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries. Nature communications, 2016. 7: p. 11886–11886. [PubMed] [Google Scholar]
  7. Li, T., et al., Failure mechanism of bulk silicon anode electrodes for lithium-ion batteries. Rare Metals, 2013. 32: p. 299–304. [Google Scholar]
  8. Zhao, X., et al., In-Plane Vacancy-Enabled High-Power Si-Graphene Composite Electrode for Lithium-Ion Batteries. Advanced Energy Materials, 2011. 1(6): p. 1079–1084. [Google Scholar]
  9. Chae, S., et al., Integration of Graphite and Silicon Anodes for the Commercialization of High-Energy Lithium-Ion Batteries. Angew Chem Int Ed Engl, 2020. 59(1): p. 110–135. [PubMed] [Google Scholar]
  10. Dou, F., et al., Silicon/Carbon Composite Anode Materials for Lithium-Ion Batteries. Electrochemical Energy Reviews, 2019. 2(1): p. 149–198. [Google Scholar]
  11. Yang, J., et al., Yolk-shell silicon-mesoporous carbon anode with compact solid electrolyte interphase film for superior lithium-ion batteries. Nano Energy, 2015. 18: p. 133–142. [Google Scholar]
  12. Mi, H., et al., A self-sacrifice template strategy to fabricate yolk-shell structured silicon@void@carbon composites for high-performance lithium-ion batteries. Chemical Engineering Journal, 2018. 351: p. 103–109. [Google Scholar]
  13. Kim, H., et al., Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. Angew Chem Int Ed Engl, 2008. 47(52): p. 10151–4. [PubMed] [Google Scholar]
  14. Bang, B.M., et al., Scalable approach to multi-dimensional bulk Si anodes via metal-assisted chemical etching. Energy & Environmental Science, 2011. 4(12). [Google Scholar]
  15. Sun, L., J. Xie, and Z. Jin, Different Dimensional Nanostructured Silicon Materials: From Synthesis Methodology to Application in High-Energy Lithium-Ion Batteries. Energy Technology, 2019. 7(11). [Google Scholar]
  16. Aghajamali, M., et al., Size and Surface Effects of Silicon Nanocrystals in Graphene Aerogel Composite Anodes for Lithium Ion Batteries. Chemistry of Materials, 2018. 30(21): p. 7782–7792. [Google Scholar]
  17. Chen, X., et al., One-Dimensional Porous Silicon Nanowires with Large Surface Area for Fast Charge⁻Discharge Lithium-Ion Batteries. Nanomaterials (Basel, Switzerland), 2018. 8(5): p. 285. [Google Scholar]
  18. Ulldemolins, M., F. Le Cras, and B. Pecquenard, Memory effect highlighting in silicon anodes for high energy density lithium-ion batteries. Electrochemistry Communications, 2013. 27: p. 22–25. [Google Scholar]
  19. Murugesan, S., et al., Copper-Coated Amorphous Silicon Particles as an Anode Material for Lithium-Ion Batteries. Chemistry of Materials, 2012. 24(7): p. 1306–1315. [Google Scholar]
  20. Yen, J.-P., et al., Sputtered copper coating on silicon/graphite composite anode for lithium ion batteries. Journal of Alloys and Compounds, 2014. 598: p. 184–190. [Google Scholar]
  21. Lin, L., et al., Copper-Nanoparticle-Induced Porous Si/Cu Composite Films as an Anode for Lithium Ion Batteries. ACS Nano, 2017. 11(7): p. 6893–6903. [PubMed] [Google Scholar]
  22. Yoo, S., et al., Highly dispersive and electrically conductive silver-coated Si anodes synthesized via a simple chemical reduction process. Nano Energy, 2013. 2(6): p. 1271–1278. [Google Scholar]
  23. Du, Z., et al., NixSi1-xAlloys Prepared by Mechanical Milling as Negative Electrode Materials for Lithium Ion Batteries. Journal of The Electrochemical Society, 2015. 163(2): p. A13-A18. [Google Scholar]
  24. Adpakpang, K., et al., A magnesiothermic route to multicomponent nanocomposites of FeSi2@Si@graphene and FeSi2@Si with promising anode performance. Electrochimica Acta, 2014. 136: p. 483–492. [Google Scholar]
  25. Deng, L., et al., High-performance Si Mn/C composite anodes with integrating inactive Mn4Si7 alloy for lithium-ion batteries. Electrochimica Acta, 2018. 260: p. 830–837. [Google Scholar]
  26. Shin, M.-S., et al., Post-annealing effects on the electrochemical performance of a Si/TiSi2 heteronanostructured anode material prepared by mechanical alloying. Journal of Power Sources, 2017. 344: p. 152–159. [Google Scholar]
  27. Kim, D., et al., Conversion Reaction of Nanoporous ZnO for Stable Electrochemical Cycling of Binderless Si Microparticle Composite Anode. ACS Nano, 2018. 12(11): p. 10903–10913. [PubMed] [Google Scholar]
  28. Martinez-Garcia, A., et al., High rate and durable, binder free anode based on silicon loaded MoO3 nanoplatelets. Sci Rep, 2015. 5: p. 10530. [PubMed] [Google Scholar]
  29. Bai, Y., et al., Core-shell Si@TiO2 nanosphere anode by atomic layer deposition for Li-ion batteries. Journal of Power Sources, 2016. 308: p. 75–82. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.