Open Access
Issue
E3S Web Conf.
Volume 261, 2021
2021 7th International Conference on Energy Materials and Environment Engineering (ICEMEE 2021)
Article Number 02054
Number of page(s) 6
Section Energy Chemistry Performance and Material Structure Analysis
DOI https://doi.org/10.1051/e3sconf/202126102054
Published online 21 May 2021
  1. Bridgwater, A.V., Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenerg. 2012, 38, 68-94. [Google Scholar]
  2. Heredia Salgado, M.A.; Tarelho, L.a.C.; Matos, M.a.A.; Rivadeneira, D.; Narváez C, R.A., Palm oil kernel shell as solid fuel for the commercial and industrial sector in Ecuador: tax incentive impact and performance of a prototype burner. J. Clean. Prod. 2019, 213, 104-113. [Google Scholar]
  3. Kulokas, M.; Praspaliauskas, M.; Pedišius, N., Investigation of buckwheat hulls as additives in the production of solid biomass fuel from straw. Energies 2021, 14, (2), 265. [Google Scholar]
  4. Kizuka, R.; Ishii, K.; Ochiai, S.; Sato, M.; Yamada, A.; Nishimiya, K., Improvement of biomass fuel properties for rice straw pellets using torrefaction and mixing with wood chips. Waste Biomass Valori. 2020 . [Google Scholar]
  5. Barta, K.; Ford, P.C., Catalytic conversion of nonfood woody biomass solids to organic liquids. Acc. Chem. Res. 2014, 47 (5), 1503-12. [CrossRef] [PubMed] [Google Scholar]
  6. Alhassan, Y.; Kumar, N.; Bugaje, I.M., Hydrothermal liquefaction of de-oiled Jatropha curcas cake using Deep Eutectic Solvents (DESs) as catalysts and cosolvents. Bioresour. Technol. 2016, 199, 375-381. [CrossRef] [PubMed] [Google Scholar]
  7. Durak, H.; Aysu, T., Structural analysis of bio-oils from subcritical and supercritical hydrothermal liquefaction of Datura stramonium L. J. Supercrit. Fluid. 2016, 108, 123-135. [Google Scholar]
  8. Raikova, S.; Smith-Baedorf, H.; Bransgrove, R.; Barlow, O.; Santomauro, F.; Wagner, J.L.; Allen, M.J.; Bryan, C.G.; Sapsford, D.; Chuck, C.J., Assessing hydrothermal liquefaction for the production of biooil and enhanced metal recovery from microalgae cultivated on acid mine drainage. Fuel Process. Technol. 2016, 142, 219-227. [Google Scholar]
  9. Gerber Van Doren, L.; Posmanik, R.; Bicalho, F.A.; Tester, J.W.; Sills, D.L., Prospects for energy recovery during hydrothermal and biological processing of waste biomass. Bioresour. Technol. 2017, 225, 67-74. [CrossRef] [PubMed] [Google Scholar]
  10. Kostas, E.T.; Durán-Jiménez, G.; Shepherd, B.J.; Meredith, W.; Stevens, L.A.; Williams, O.S.A.; Lye, G.J.; Robinson, J.P., Microwave pyrolysis of olive pomace for bio-oil and bio-char production. Chem. Eng. J. 2020, 387, 123404. [Google Scholar]
  11. Rodriguez Correa, C.; Otto, T.; Kruse, A., Influence of the biomass components on the pore formation of activated carbon. Biomass Bioenerg. 2017, 97, 53-64. [Google Scholar]
  12. Allan G. W. Bradbury, Y.S., And Fred Shafizadeh, A kinetic model for pyrolysis of cellulose. J. Appl. Polym. Sci. 1979, 23, 3271-3280 (1979). [Google Scholar]
  13. G, V.; P, S.O.; L, M.S., Kinetics of the thermal decomposition of cellulose in sealed vessels at elevated pressures. Effects of the presence of water on the reaction mechanism. J. Anal. Appl. Pyrolysis 1993. [Google Scholar]
  14. Yang, Y.; Brammer, J.G.; Mahmood, A.S.N.; Hornung, A., Intermediate pyrolysis of biomass energy pellets for producing sustainable liquid, gaseous and solid fuels. Bioresour. Technol. 2014, 169, 794-799. [CrossRef] [PubMed] [Google Scholar]
  15. Dong, P.; Chen, G.; Zeng, X.; Chu, M.; Gao, S.; Xu, G., Evolution of inherent oxygen in solid fuels during pyrolysis. Energ. Fuel. 2015, 29 (4), 2268-2276. [Google Scholar]
  16. Liu, Z.; Han, G., Production of solid fuel biochar from waste biomass by low temperature pyrolysis. Fuel 2015, 158, 159-165. [CrossRef] [Google Scholar]
  17. Manyà, J.J.; García-Ceballos, F.; Azuara, M.; Latorre, N.; Royo, C., Pyrolysis and char reactivity of a poorquality refuse-derived fuel (RDF) from municipal solid waste. Fuel Process. Technol. 2015, 140, 276-284. [Google Scholar]
  18. Tuly, S.S.; Rahman, M.S., Pyrolysis kinetics study of three biomass solid wastes for thermochemical conversion into liquid fuels. AIP Conf. Proc. 2017, 1851 [Google Scholar]
  19. Sygula, E.; Swiechowski, K.; Stepien, P.; Koziel, J.A.; Bialowiec, A., The prediction of calorific value of carbonized solidfuel produced from refuse-derived fuel in the low-temperature pyrolysis in CO2. Materials 2020, 14, (1). [Google Scholar]
  20. Wang, Y.; Zhu, Y.; Zhou, Z.; Yang, J.; Pan, Y.; Qi, F., Pyrolysis study on solid fuels: from conventional analytical methods to synchrotron vacuum ultraviolet photoionization mass spectrometry. Energ. Fuel. 2016, 30, (3), 1534-1543. [Google Scholar]
  21. Younan, Y.; Van Goethem, M.W.M.; Stefanidis, G.D., A particle scale model for municipal solid waste and refuse-derived fuels pyrolysis. Comput. Chem. Eng. 2016, 86, 148-159. [Google Scholar]
  22. Mokrzycki, J.; Gazińska, M.; Fedyna, M.; Karcz, R.; Lorenc-Grabowska, E.; Rutkowski, P., Pyrolysis and torrefaction of waste wood chips and cone-like flowers derived from black alder (Alnus glutinosa L. Gaertn.) for sustainable solid fuel production. Biomass Bioenerg. 2020, 143, 105842. [Google Scholar]
  23. Zhang, H.; Zhang, X.; Shao, J.; Wang, H.; Zhang, S.; Chen, H., Effect of temperature on the product characteristics and fuel-nitrogen evolution during chromium-tanned solid wastes pyrolysis polygeneration. J. Clean. Prod. 2020, 254, 120020. [Google Scholar]
  24. Veses, A.; Sanahuja-Parejo, O.; Callen, M.S.; Murillo, R.; Garcia, T., A combined two-stage process of pyrolysis and catalytic cracking of municipal solid waste for the production of syngas and solid refusederived fuels. Waste Manage. 2020, 101, 171-179. [Google Scholar]
  25. Kan, T.; Strezov, V.; Evans, T.J., Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renew. Sust. Enegy. Rev. 2016, 57, 1126-1140. [Google Scholar]
  26. Wang, K.; Peng, N.; Lu, G.; Dang, Z., Effects of pyrolysis temperature and holding time on physicochemical properties of swine-manure-derived biochar. Waste Biomass Valori. 2018, 11(2), 613-624. [Google Scholar]
  27. Mochizuki, Y.; Tsubouchi, N., Preparation of pelletized coke by co-carbonization of caking coal and pyrolyzed char modified with tar produced during pyrolysis of woody biomass. Fuel Process. Technol. 2019, 193, 328-337. [Google Scholar]
  28. Wang, H.; Xu, J.; Sheng, L., Preparation of straw biochar and application of constructed wetland in China: A review. J. Clean. Prod. 2020, 273, 123-131. [Google Scholar]
  29. Oginni, O.; Singh, K., Effect of carbonization temperature on fuel and caffeine adsorption characteristics of white pine and Norway spruce needle derived biochars. Ind. Crop. Prod. 2021, 162, 113261. [Google Scholar]
  30. Xu, S.; Chen, J.; Peng, H.; Leng, S.; Li, H.; Qu, W.; Hu, Y.; Li, H.; Jiang, S.; Zhou, W.; Leng, L., Effect of biomass type and pyrolysis temperature on nitrogen in biochar, and the comparison with hydrochar. Fuel 2021, 291, 120-128. [Google Scholar]
  31. Liu, J.; Huang, S.; Chen, K.; Wang, T.; Mei, M.; Li, J., Preparation of biochar from food waste digestate: Pyrolysis behavior and product properties. Bioresour. Technol. 2020, 302, 122841. [CrossRef] [PubMed] [Google Scholar]
  32. Ahmad, J.; Patuzzi, F.; Rashid, U.; Shahabz, M.; Ngamcharussrivichai, C.; Baratieri, M., Exploring untapped effect of process conditions on biochar characteristics and applications. Environ. Technol. Inno. 2021, 21, 101310. [Google Scholar]
  33. Pan, X.; Gu, Z.; Chen, W.; Li, Q., Preparation of biochar and biochar composites and their application in a Fenton-like process for wastewater decontamination: A review. Sci. Total Environ. 2021, 754, 142104. [CrossRef] [PubMed] [Google Scholar]
  34. Zhang, X.; Gao, B.; Zhao, S.; Wu, P.; Han, L.; Liu, X., Optimization of a “coal-like” pelletization technique based on the sustainable biomass fuel of hydrothermal carbonization of wheat straw. J. Clean. Prod. 2020, 242, 118426. [Google Scholar]
  35. Bazargan, A.; Rough, S.L.; Mckay, G., Compaction of palm kernel shell biochars for application as solid fuel. Biomass Bioenerg. 2014, 70, 489-497. [Google Scholar]
  36. Espuelas, S.; Marcelino, S.; Echeverría, A.M.; Del Castillo, J.M.; Seco, A., Low energy spent coffee grounds briquetting with organic binders for biomass fuel manufacturing. Fuel 2020, 278, 118310. [Google Scholar]
  37. Ajith Kumar, J.; Vinoth Kumar, K.; Petchimuthu, M.; Iyahraja, S.; Vignesh Kumar, D., Comparative analysis of briquettes obtained from biomass and charcoal. Biomass Bioenerg. 2020 . [Google Scholar]
  38. Stelte, W.; Holm, J.K.; Sanadi, A.R.; Barsberg, S.; Ahrenfeldt, J.; Henriksen, U.B., A study of bonding and failure mechanisms in fuel pellets from different biomass resources. Biomass Bioenerg. 2011, 35, (2), 910-918. [Google Scholar]
  39. Ferraro, G.; Pecori, G.; Rosi, L.; Bettucci, L.; Fratini, E.; Casini, D.; Rizzo, A.M.; Chiaramonti, D., Biochar from lab-scale pyrolysis: influence of feedstock and operational temperature. Biomass Convers. Bior. 2021. [Google Scholar]
  40. Kethobile, E.; Ketlogetswe, C.; Gandure, J., Torrefaction of non oil Jatropha curcas L. (Jatropha) biomass for solid fuel. Biomass Bioenerg. 2020, 6, (12), e05657. [Google Scholar]
  41. Bach, Q.-V.; Skreiberg, Upgrading biomass fuels via wet torrefaction: A review and comparison with dry torrefaction. Renew. Sust. Enegy. Rev. 2016, 54, 665-677. [Google Scholar]
  42. Hassan, S.S.; Williams, G.A.; Jaiswal, A.K., Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresour. Technol. 2018, 262, 310-318. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.