Open Access
Issue
E3S Web Conf.
Volume 264, 2021
International Scientific Conference “Construction Mechanics, Hydraulics and Water Resources Engineering” (CONMECHYDRO - 2021)
Article Number 02003
Number of page(s) 10
Section Road Construction, Building Structures and Materials
DOI https://doi.org/10.1051/e3sconf/202126402003
Published online 02 June 2021
  1. Rybakov V., Seliverstov A., Petrov D., Smirnov A., and Volkova A., Lightweight steel concrete structures slab panels load-bearing capacity in MATEC Web of Conferences, Dec. 2018, 245 (2018) DOI: 10.1051/matecconf/201824508008. [Google Scholar]
  2. V. A. Rybakov, I.A. Ananeva, E. D. Pichugin, and M. Garifullin, “Heat protective properties of enclosure structure from thin-wall profiles with foamed concrete,” Mag. Civ. Eng., 94, JN° 2, pp. 11–20, (2020), DOI: 10.18720/MCE.94.2. [Google Scholar]
  3. D. O. Sovetnikov, N.V. Videnkov, and D. A. Trubina, “Light gauge steel framing in construction of multi-storey buildings,” Constr. Unique Build. Struct, vol. 3(30), N° 3, pp. 152–165, (2015) DOI: 10.18720/CUBS.30.11. [Google Scholar]
  4. N. I. Vatin, V. V. Volodin, Ye. A. Zolotareva, K. V. Petrov, and Ye. N. Zhmarin, Rekonstruktsiya krysh Sankt-Peterburga na osnove legkikh stal’nykh tonkostennykh konstruktsiy i antiobledenitel’noy sistemy, Mag. Civ. Eng., 12, N° 2, pp. 59–64. (2010) DOI: 10.18720/MCE.12.10. [Google Scholar]
  5. V. Rybakov, A. Seliverstov, D. Petrov, A. Smirnov, and A. Volkova, “Strength characteristics of foam concrete samples with various additives,” in MATEC Web of Conferences, Dec. 2018, 245 (2018) DOI: 10.1051/matecconf/201824503015. [Google Scholar]
  6. K. Usanova and Y. G. Barabanshchiko, Cold-bonded fly ash aggregate concrete, Mag. Civ. Eng., 95, JN° 3, pp. 104–118. (2020) DOI: 10.18720/MCE.95.10. [Google Scholar]
  7. K. Usanova, Properties of Cold-Bonded Fly Ash Lightweight Aggregate Concretes, in Lecture Notes in Civil Engineering, 70, pp. 507–516, (2020) [Google Scholar]
  8. H. Fares, H. Toutanji, K. Pierce, and A. Noumowé, “Lightweight self-consolidating concrete exposed to elevated temperatures,” J. Mater. Civ. Eng., 27, N° 12, (2015), DOI: 10.1061/(ASCE)MT.1943-5533.0001285. [Google Scholar]
  9. L. Hou, J. Li, Z. Lu, Y. Niu, J. Jiang, and T. Li, Effect of nanoparticles on foaming agent and the foamed concrete, Constr. Build. Mater, 227, (2019), DOI: 10.1016/j.conbuildmat.2019.116698. [Google Scholar]
  10. O. D. Samarin, Temperature in linear elements of enclosing structures, Mag. Civ. Eng., 70, JN° 2, pp. 3–10. (2017), DOI: 10.5862/MCE.70.1. [Google Scholar]
  11. V. A. Rybakov, I. A. Ananeva, A. O. Rodicheva, and O. T. Ogidan, “Stress-strain state of composite reinforced concrete slab elements under fire activity, Mag. Civ. Eng., 74, JN° 6, pp. 161–174, (2017), DOI: 10.18720/MCE.74.13. [Google Scholar]
  12. E. Nedviga, N. Beresneva, M. Gravit, and A. Blagodatskaya, “Fire Resistance of Prefabricated Monolithic Reinforced Concrete Slabs of Marko” Technology, Adv. Intell. Syst. Comput., 692, pp. 739–749, (2018), DOI: 10.1007/978-3-319-70987-178. [Google Scholar]
  13. A. V. Bushmanova, D. K. Kharchenko, K. S. Semenov, Y. G. Barabanshchikov, V. K. Korovina, and A. V. Dernakova, Thermal cracking resistance in massive steel-reinforced concrete structures, Mag. Civ. Eng., 79, N° 3, pp. 45–53. (2018) DOI: 10.18720/MCE.79.5. [Google Scholar]
  14. J. J. del Coz-Diaz, J. E. Martinez-Martinez, M. Alonso-Martinez, and F. P. Alvarez Rabanal, Comparative study of LightWeight and Normal Concrete composite slabs behaviour under fire conditions, Eng. Struct., 207, (2020), DOI: 10.1016/j.engstruct.2020.110196. [Google Scholar]
  15. C. O. Chin, X. Yang, S. Y. Kong, S. C. Paul, Susilawati, and L. S. Wong, Mechanical and thermal properties of lightweight concrete incorporated with activated carbon as coarse aggregate, J. Build. Eng., 31, (2020) DOI: 10.1016/j.jobe.2020.101347. [Google Scholar]
  16. Q. T. Nguyen, T. Ngo, P. Tran, P. Mendis, L. Aye, and S. K. Baduge, Fire resistance of a prefabricated bushfire bunker using aerated concrete panels, Constr. Build. Mater, 174, pp. 410–420, (2018), DOI: 10.1016/j.conbuildmat.2018.04.065. [Google Scholar]
  17. X. Wang, P. Ren, and W. Wang, Post-fire mechanical property of thin-walled steel beam-ceramsite concrete assembled composite floors, Jianzhu Jiegou Xuebao/Journal Build. Struct, 38, JN° 4, pp. 70–80. (2017), DOI: 10.14006/j.jzjgxb.2017.04.009. [Google Scholar]
  18. B. Baleshan and M. Mahendran, Experimental study of light gauge steel framing floor systems under fire conditions, Adv. Struct. Eng., 20, N° 3, pp. 426–445. (2017), DOI: 10.1177/1369433216653508. [Google Scholar]
  19. B. Baleshan and M. Mahendran, Numerical study of high strength LSF floor systems in fire, Thin-Walled Struct., 101, pp. 85–99, (2016), DOI: 10.1016/j.tws.2015.12.018. [Google Scholar]
  20. W. H. Wan Badaruzzaman, M. F. M. Zain, H. M. Shodiq, A. M. Akhand, and J. Sahari, Fire resistance performance of profiled steel sheet dry board (PSSDB) flooring panel system, Build. Environ., vol. 38, JN” 7, pp. 907–912. (2003), DOI: 10.1016/S0360-1323(03)00029-5. [Google Scholar]
  21. G. C. Clifton, Design of composite steel floor systems for severe fires, in Proceedings of 8th Pacific Structural Steel Conference - Steel Structures in Natural Hazards, PSSC 2007, 2, pp. 237–242. (2007) [Google Scholar]
  22. H. Gu, X. Wang, and J. Xu, “Fire test on fabricated composite slabs of lightweight aggregate concrete and thin-walled steel beams with openings in web,” Jianzhu Jiegou Xuebao/Journal Build. Struct, 37, JN° 5, pp. 48–56, (2016), DOI: 10.14006/j.jzjgxb.2016.05.006. [Google Scholar]
  23. A.V. Bushmanova, D.K. Kharchenko, K.V. Semenov, Yu.G. Barabanshchikov, V.K. Korovina, A.V. Dernakova, Thermal cracking resistance in massive steel-reinforced concrete structures, Magazine of Civil Engineering, 79 (3), pp. 45–53, (2018) [Google Scholar]
  24. M. Gravit, E. Nedviga, N. Vinogradova, Z. Teplova, Fire resistance of prefabricated monolithic slab, MATEC Web of Conferences, 106, article JN” 02025, (2017) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.