Open Access
Issue
E3S Web Conf.
Volume 264, 2021
International Scientific Conference “Construction Mechanics, Hydraulics and Water Resources Engineering” (CONMECHYDRO - 2021)
Article Number 03041
Number of page(s) 7
Section Hydraulics of Structures, Hydraulic Engineering and Land Reclamation Construction
DOI https://doi.org/10.1051/e3sconf/202126403041
Published online 02 June 2021
  1. F. Shaazizov, A. Badalov, A. Ergashev, and D. Shukurov, “Studies of rational methods of water selection in water intake areas of hydroelectric power plants,” in E3S Web of Conferences, 2019, vol. 97, DOI: 10.1051/e3sconf/20199705041. [Google Scholar]
  2. F. Shaazizov and D. Shukurov, “Physical modeling of the filtration process through the dam base,” in IOP Conference Series: Materials Science and Engineering, 2020, vol. 869, no. 7, DOI: 10.1088/1757-899X/869/7/072037. [CrossRef] [Google Scholar]
  3. F. Shaazizov, A. Badalov, D. Shukurov, and D. Yulchiev, “Hydraulic elevator for cleaning sediment of a water outlet of a reservoir,” in IOP Conference Series: Materials Science and Engineering, 2020, vol. 883, no. 1, DOI: 10.1088/1757-899X/883/1/012018. [CrossRef] [Google Scholar]
  4. D. Bazarov, F. Shaazizov, and S. Erjigitov, “Transfer of Amudarya flowing part to increase the supportability of the Uzbekistan southern regions,” in IOP Conference Series: Materials Science and Engineering, 2020, vol. 883, no. 1, DOI: 10.1088/1757-899X/883/1/012068. [Google Scholar]
  5. F. Shaazizov, B. Uralov, E. Shukurov, and A. Nasrulin, “Development of the computerized decision-making support system for the prevention and revealing of dangerous zones of flooding,” in E3S Web of Conferences, 2019, DOI: 10.1051/e3sconf/20199705040. [Google Scholar]
  6. O. Birjukova, S. Guillen, F. Alegria, and A. H. Cardoso, “Three dimensional flow field at confluent fixed-bed open channels,” in Proceedings of the International Conference on Fluvial Hydraulics, RIVER FLOW 2014, 2014, pp. 1007–1014, DOI: 10.1201/b17133-136. [Google Scholar]
  7. Sushant K. Biswal, Pranab Mohapatra, and K. Muralidhar, “Hydraulics of combining flow in a right-angled compound open channel junction,” Sadhana-Acad. Proc. Eng. Sci., vol. 41, no. 1, pp. 97–110, 2016, DOI: 10.1007/s12046-015-0442-y. [Google Scholar]
  8. G. Bombar and A. H. Cardoso, “Effect of the sediment discharge on the equilibrium bed morphology of movable bed open-channel confluences,” Geomorphology, vol. 367, 2020, DOI: 10.1016/j.geomorph.2020.107329. [CrossRef] [Google Scholar]
  9. K. M. Buzby and R. C. Viadero Jr., “Structural and functional aspects of treated mine water and aquaculture effluent streams,” Hydrobiologia, vol. 583, no. 1, pp. 251–263, 2007, DOI: 10.1007/s10750-006-0534-0. [Google Scholar]
  10. K. Chen, M. Feng, T. Zhang, and S. Teng, “Study on distribution of pollutant concentrations in intersection of open channel Shuili Fadian Xuebao/Journal Hydroelectr. Eng., vol. 38, no. 10, pp. 86–100, 2019, DOI: 10.11660/slfdxb.20191008. [Google Scholar]
  11. S. Creelle, L. Schindfessel, P. X. Ramos, and T. De Mulder, “Experimental investigation of the flow evolution in the tributary of a 90° open channel confluence,” in River Flow-Proceedings of the International Conference on Fluvial Hydraulics, RIVER FLOW 2016, 2016, pp. 1667–1673, DOI: 10.1201/9781315644479-260. [Google Scholar]
  12. J. Holden, M. Gascoign, and N. R. Bosanko, “Erosion and natural revegetation associated with surface land drains in upland peatlands,” Earth Surf. Process. Landforms, vol. 32, no. 10, pp. 1547–1557, 2007, DOI: 10.1002/esp.1476. [Google Scholar]
  13. D. V. Kozlov and A. A. Ghebrehiwot, “Efficacy of digital elevation and Nash models in runoff forecast,” Mag. Civ. Eng., vol. 87, no. 3, pp. 103–122, 2019, DOI: 10.18720/MCE.87.9. [Google Scholar]
  14. Q. W. Lewis and B. L. Rhoads, “LSPIV Measurements of Two-Dimensional Flow Structure in Streams Using Small Unmanned Aerial Systems: 2. Hydrodynamic Mapping at River Confluences,” Water Resour. Res., vol. 54, no. 10, pp. 7981–7999, 2018, DOI: 10.1029/2018WR022551. [Google Scholar]
  15. T.-H. Liu, W. Guo, and L. Zhan, “Experimental study of the velocity profile at 90° open channel confluence,” Shuikexue Jinzhan/Advances Water Sci., vol. 20, no. 4, pp. 485–489, (2009) [Google Scholar]
  16. H. Luo, D. K. Fytanidis, A. R. Schmidt, and M. H. Garcia, “Comparative 1D and 3D numerical investigation of open-channel junction flows and energy losses,” Adv. Water Resour., vol. 117, pp. 120–139, 2018, DOI: 10.1016/j.advwatres.(2018.05.012) [Google Scholar]
  17. T. Nagai, A. Tandon, H. Yamazaki, and M. J. Doubell, “Evidence of enhanced turbulent dissipation in the frontogenetic Kuroshio Front thermocline,” Geophys. Res. Lett., vol. 36, no. 12, 2009, DOI: 10.1029/2009GL038832. [CrossRef] [Google Scholar]
  18. L. Schindfessel, S. Creelle, T. Boelens, and T. De Mulder, “Flow patterns in an open channel confluence with a small ratio of main channel to tributary discharge,” in Proceedings of the International Conference on Fluvial Hydraulics, RIVER FLOW 2014, 2014, pp. 989–996, DOI: 10.1201/b17133-134. [Google Scholar]
  19. L. Schindfessel, S. Creelle, and T. De Mulder, “Dynamic mode decomposition applied to the shear layer flows in an open channel confluence,” in River Flow-Proceedings of the International Conference on Fluvial Hydraulics, RIVER FLOW 2016, 2016, pp. 1674–1682, DOI: 10.1201/9781315644479-261. [Google Scholar]
  20. A. Shakibaeinia, Y. B. Dibike, S. Kashyap, T. D. Prowse, and I. G. Droppo, “A numerical framework for modelling sediment and chemical constituents transport in the Lower Athabasca River,” J. Soils Sediments, vol. 17, no. 4, pp. 1140–1159, 2017, DOI: 10.1007/s11368-016-1601-4. [Google Scholar]
  21. L. M. Stahr and E. D. Loucks, “Flood control solutions for Bayou Henderson, Ascension Parish, LA,” in World Environmental and Water Resources Congress 2008: Ahupua’a-Proceedings of the World Environmental and Water Resources Congress 2008, 2008, vol. 316, DOI: 10.1061/40976(316)587. [Google Scholar]
  22. J. Todd Petty, J. L. Hansbarger, B. M. Huntsman, and P. M. Mazik, “Brook trout movement in response to temperature, flow, and thermal refugia within a complex Appalachian riverscape,” Trans. Am. Fish. Soc., vol. 141, no. 4, pp. 1060–1073, 2012, DOI: 10.1080/00028487.2012.681102. [Google Scholar]
  23. H. Wang, B. Wang, X. Liu, X. Wang, and T. Liu, “Experimental study on water-level fluctuation characteristics at open channel confluence zone,” Sichuan Daxue Xuebao (Gongcheng Kexue Ban)/Journal Sichuan Univ. (Engineering Sci. Ed., vol. 47, pp. 13–17, 2015, DOI: 10.15961/j.jsuese.(2015.s1.003) [Google Scholar]
  24. X. Wang, X. Yan, H. Duan, X. Liu, and E. Huang, “Experimental study on the influence of river flow confluences on the open channel stage-discharge relationship,” Hydrol. Sci. J., vol. 64, no. 16, pp. 2025–2039, (2019), DOI: 10.1080/02626667.2019.1661415. [Google Scholar]
  25. Q. Y. Yang, T. H. Liu, W. Z. Lu, and X. K. Wang, “Numerical simulation of confluence flow in open channel with dynamic meshes techniques,” Adv. Mech. Eng., vol. 2013, 2013, DOI: 10.1155/2013/860431. [Google Scholar]
  26. E. Kan, M. Mukhammadiev, N. Ikramov, and T. Majidov, “Full-scale testing of the pump unit with a frequency converter,” in IOP Conference Series: Materials Science and Engineering, 2020, vol. 883, no. 1, DOI: 10.1088/1757-899X/883/1/012112. [Google Scholar]
  27. N. Ikramov, T. Majidov, E. Kan, and A. Mukhammadjonov, “Monitoring system for electricity consumption at pumping stations,” in IOP Conference Series: Materials Science and Engineering, 2020, vol. 883, no. 1, DOI: 10.1088/1757-899X/883/1/012101. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.