Open Access
Issue
E3S Web Conf.
Volume 264, 2021
International Scientific Conference “Construction Mechanics, Hydraulics and Water Resources Engineering” (CONMECHYDRO - 2021)
Article Number 03058
Number of page(s) 11
Section Hydraulics of Structures, Hydraulic Engineering and Land Reclamation Construction
DOI https://doi.org/10.1051/e3sconf/202126403058
Published online 02 June 2021
  1. Carley, J., Pasternack, G., Wyrick, J., and Barker, J. Significant decadal channel change 58-67years post-dam accounting for uncertainty in topographic change detection between et al., “The impact of hydropower plant on downstream river reach,” Environ. Res. Eng., (2012). [Google Scholar]
  2. I. G. Baird et al. “The Downstream Impacts of Hydropower Dams and Indigenous and Local Knowledge: Examples from the Peace-Athabasca, Mekong, and Amazon,” Environ. Manage., vol. 67, no. 4, pp. 682–696, 2021, DOI: 10.1007/s00267-020-01418-x. [CrossRef] [PubMed] [Google Scholar]
  3. B. Rolland et al. “Hepatitis C in a psychiatric setting: A forgotten reservoir? | Hepatite C en milieu psychiatrique : un reservoir oublie ?,” Encephale, vol. 47, no. 2, pp. 181–184, 2021, DOI: 10.1016/j.encep.(2020).03.003. [CrossRef] [PubMed] [Google Scholar]
  4. S. Rakhmatullaev, F. Huneau, M. Bakiev, M. Motelica-Heino, and P. Le Coustumer, “Sedimentation of reservoirs in Uzbekistan: A case study of the Akdarya reservoir, Zerafshan River Basin,” IAHS-AISHPubl., vol. 349, pp. 171–181, (2011) [Google Scholar]
  5. S. Rakhmatullaev, F. Huneau, H. Celle-Jeanton, P. Le Coustumer, M. Motelica-Heino, and M. Bakiev, “Water reservoirs, irrigation and sedimentation in Central Asia: A first-cut assessment for Uzbekistan,” Environ. Earth Sci., vol. 68, no. 4, pp. 985–998, 2013, DOI: 10.1007/s12665-012-1802-0. [Google Scholar]
  6. S. Rakhmatullaev, F. Huneau, H. Celle-Jeanton, P. Le Coustumer, M. Motelica-Heino, and M. Bakiev, “Water reservoirs, irrigation and sedimentation in Central Asia: A first-cut assessment for Uzbekistan,” Environ. Earth Sci., vol. 68, no. 4, pp. 985–998, 2013, DOI: 10.1007/s12665-012-1802-0. [Google Scholar]
  7. I. S. Ramroop and D. Ph, “GIS Applications in Water Resources and Environmental Engineering,” vol. 423, 2012. [Google Scholar]
  8. S. Wang et al. “DEM generation from Worldview-2 stereo imagery and vertical accuracy assessment for its application in active tectonics,” Geomorphology, 2019, DOI: 10.1016/j.geomorph.(2019).03.016. [Google Scholar]
  9. Y. Jianzhong, H. Fenqin, and L. Zhibing, “Researching the Relationships between the Environmental Change of Vegetation and the Activity of Debris Flows Based on Remote Sensing and GIS,” Procedia Environ. Sci., vol. 11, pp. 918–924, 2011, doi: https://doi. org/10.1016/j .proenv.(2011).12.141. [Google Scholar]
  10. Y. Jianzhong, H. Fenqin, and L. Zhibing, “Researching the Relationships between the Environmental Change of Vegetation and the Activity of Debris Flows Based on Remote Sensing and GIS,” Procedia Environ. Sci., vol. 11, pp. 918–924, 2011, doi: https://doi.org/10.1016/j.proenv.(2011).12.141. [Google Scholar]
  11. M. K. Jha, A. Chowdhury, V. M. Chowdary, and S. Peiffer, “Groundwater management and development by integrated remote sensing and geographic information systems: prospects and constraints,” Water Resour. Manag., vol. 21, no. 2, pp. 427–467, 2007, DOI: 10.1007/s11269-006-9024-4. [Google Scholar]
  12. M. N. Gebeyehu, “Remote Sensing and GIS Application in Agriculture and Natural Resource Management,” Int. J. Environ. Sci. Nat. Resour., vol. 19, no. 2, 2019, DOI: 10.19080/ijesnr.2019.19.556009. [Google Scholar]
  13. K. Khasanov and Bakiev Masharif, “Water Reservoir Area and Volume Determination using Geoinformation Technologies and Remote Sensing,” Int. J. Recent Technol. Eng., vol. 8, no. 4, pp. 5458–5461, Nov. 2019, DOI: 10.35940/ijrte.d8089.118419. [Google Scholar]
  14. K. S. Rawat, S. K. Singh, M. I. Singh, and B. L. Garg, “Comparative evaluation of vertical accuracy of elevated points with ground control points from ASTERDEM and SRTMDEM with respect to CARTOSAT-1DEM,” Remote Sens. Appl. Soc. Environ., 2019, DOI: 10.1016/j.rsase.(2018).11.005. [Google Scholar]
  15. G. Amatulli, D. Mcinerney, T. Sethi, P. Strobl, and S. Domisch, “Geomorpho90m, empirical evaluation and accuracy assessment of global high-resolution geomorphometric layers,” DOI: 10.1038/s41597-020-0479-6. [Google Scholar]
  16. N. Al-Mutairi, M. Alsahli, M. Ibrahim, R. Abou Samra, and M. El-Gammal, “Spatial Enhancement of DEM Using Interpolation Methods: A Case Study of Kuwait's Coastal Zones,” Am. J. Remote Sens., vol. 7, no. 1, p. 5, 2019, DOI: 10.11648/j.ajrs.20190701.12. [Google Scholar]
  17. D. R. Cowan and G. R. J. Cooper, “Shuttle Radar Topography Mission,” in 67th European Association of Geoscientists and Engineers, EAGE Conference and Exhibition, incorporating SPE EUROPE2005-Extended Abstracts, 2005, DOI: 10.1071/EG05334. [Google Scholar]
  18. R. Bamler, “The SRTM mission: A worldwide 30m resolution DEM from SAR interferometry in 11 days,” Photogramm. Week, (1999) [Google Scholar]
  19. D. Cowan and G. Cooper, “The Shuttle Radar Topography Mission?a new source of near-global digital elevation data,” Explor. Geophys., 2005, DOI: 10.1071/EG05334. [Google Scholar]
  20. R. Bhambri et al. “(No Title),” 2017, DOI: 10.1038/s41598-020-61277-8. [Google Scholar]
  21. T. G. Farr et al. “The shuttle radar topography mission,” Rev. Geophys., 2007, DOI: 10.1029/2005RG000183. [Google Scholar]
  22. A. Patel, S. K. Katiyar, and V. Prasad, “Performances evaluation of different open source DEM using Differential Global Positioning System (DGPS),” Egypt. J. Remote Sens. Sp. Sci., 2016, DOI: 10.1016/j.ejrs.2015.12.004. [Google Scholar]
  23. A. Sharma and K. N. Tiwari, “A comparative appraisal of hydrological behavior of SRTM DEM at catchment level,” J. Hydrol., 2014, DOI: 10.1016/j.jhydrol.2014.08.062. [Google Scholar]
  24. T. Tachikawa et al., “ASTER global digital elevation model version 2-summary of validation results,” Arch. Cent. Jt. Japan-USASTER Sci. Team, (2011) [Google Scholar]
  25. A. Mondal, D. Khare, S. Kundu, S. Mukherjee, A. Mukhopadhyay, and S. Mondal, “Uncertainty of soil erosion modelling using open source high resolution and aggregated DEMs,” Geosci. Front., 2017, DOI: 10.1016/j.gsf.(2016).03.004. [Google Scholar]
  26. H. T. Pham, L. Marshall, F. Johnson, and A. Sharma, “A method for combining SRTM DEM and ASTER GDEM2 to improve topography estimation in regions without reference data,” Remote Sens. Environ., 2018, DOI: 10.1016/j.rse.(2018).03.026. [Google Scholar]
  27. L. G. Courty, J. C. Soriano-Monzalvo, and A. Pedrozo-Acuna, “Evaluation of openaccess global digital elevation models (AW3D30, SRTM, and ASTER) for flood modelling purposes,” J. Flood Risk Manag., vol. 12, no. S1, Oct. 2019, DOI: 10.1111/jfr3.12550. [CrossRef] [Google Scholar]
  28. J. Ngula Niipele and J. Chen, “The usefulness of alos-palsar dem data for drainage extraction in semi-arid environments in The Iishana sub-basin,” J. Hydrol. Reg. Stud., vol. 21, 2019, DOI: 10.1016/j.ejrh.(2018).11.003. [Google Scholar]
  29. A. Das, R. Agrawal, and S. Mohan, “Topographic correction of ALOS-PALSAR images using InSAR-derived DEM,” Geocarto Int., vol. 30, no. 2, pp. 145–153, Feb. 2015, DOI: 10.1080/10106049.2014.883436. [Google Scholar]
  30. T. Borner et al. “ALOS PALSAR products verification,” Int. Geosci. Remote Sens. Symp, no. May 2014, pp. 5214–5217, 2007, DOI: 10.1109/IGARSS.2007.4424037. [Google Scholar]
  31. B. Caglar, K. Becek, C. Mekik, and M. Ozendi, “On the vertical accuracy of the ALOS world 3D-30m digital elevation model,” Remote Sens. Lett., vol. 9, no. 6, 2018, DOI: 10.1080/2150704X.2018.1453174. [Google Scholar]
  32. J. R. Santillan, M. Makinano-Santillan, and R. M. Makinano, “Vertical accuracy assessment of ALOS World 3D-30M Digital Elevation Model over northeastern Mindanao, Philippines,” in International Geoscience and Remote Sensing Symposium (IGARSS), 2016, vol. 2016 Novem, DOI: 10.1109/IGARSS.2016.7730400. [Google Scholar]
  33. J. A. E. A. Jaxa, “ALOS Data Users Handbook,” Earth Obs. Res. Appl. Cent. Japan Aerosp. Explor. Agency, no. March, p. 158, (2008) [Google Scholar]
  34. C. Chen, X. Wang, C. Yan, B. Guo, and G. Liu, “A total error-based multiquadric method for surface modeling of digital elevation models,” GIScience Remote Sens., 2016, DOI: 10.1080/15481603.2016.1172396. [Google Scholar]
  35. K. Khasanov, “Evaluation of ASTER DEM and SRTM DEM data for determining the area and volume of the water reservoir,” IOP Conf. Ser. Mater. Sci. Eng., vol. 883, no. 1, (2020) [Google Scholar]
  36. X. Liu, Z. Zhang, J. Peterson, and S. Chandra, “The effect of LiDAR data density on DEM accuracy,” MODSIM 2007-Int. Congr. Model. Simul.-Land, Water Environ. Manag. Integr. Syst. Sustain. Proc., pp. 1363–1369, (2007) [Google Scholar]
  37. I. Elkhrachy, “Vertical accuracy assessment for SRTM and ASTER Digital Elevation Models: A case study of Najran city, Saudi Arabia,” Ain Shams Eng. J., 2018, DOI: 10.1016/j.asej.(2017).01.007. [Google Scholar]
  38. L. G. Courty, J. C. Soriano-Monzalvo, and A. Pedrozo-Acuna, “Evaluation of open access global digital elevation models (AW3D30, SRTM, and ASTER) for flood modelling purposes,” J. Flood Risk Manag., vol. 12, no. S1, 2019, DOI: 10.1111/jfr3.12550. [CrossRef] [Google Scholar]
  39. M.R. del Gonzalez-Moradas and W. Viveen, “Evaluation of ASTER GDEM2, SRTMv3.0, ALOS AW3D30 and TanDEM-X DEMs for the Peruvian Andes against highly accurate GNSS ground control points and geomorphological-hydrological metrics,” Remote Sens. Environ., 2020, DOI: 10.1016/j.rse.2019.111509. [Google Scholar]
  40. D. F. Maune, “Digital Elevation Model ( DEM ) Whitepaper NRCS High Resolution Elevation Data,” p. 120, (2010) [Google Scholar]
  41. G. Schumann, P. Matgen, M. E. J. Cutler, A. Black, L. Hoffmann, and L. Pfister, “Comparison of remotely sensed water stages from LiDAR, topographic contours and SRTM,” ISPRS J. Photogramm. Remote Sens., 2008, DOI: 10.1016/j.isprsjprs. (2007).09.004. [Google Scholar]
  42. N. Chrysoulakis, M. Abrams, Y. Kamarianakis, and M. Stanislawski, “Validation of ASTER GDEM for the area of Greece,” Photogramm. Eng. Remote Sensing, 2011, DOI: 10.14358/pers.77.2.157. [Google Scholar]
  43. T. Chu and K. E. Lindenschmidt, “Comparison and Validation of Digital Elevation Models Derived from InSAR for a Flat Inland Delta in the High Latitudes of Northern Canada,” Can. J. Remote Sens., vol. 43, no. 2, 2017, DOI: 10.1080/07038992.2017.1286936. [Google Scholar]
  44. K. G. Nikolakopoulos, E. K. Kamaratakis, and N. Chrysoulakis, “SRTM vs ASTER elevation products. Comparison for two regions in Crete, Greece,” Int. J. Remote Sens., vol. 27, no. 21, pp. 4819–4838, Nov. 2006, DOI: 10.1080/01431160600835853. [Google Scholar]
  45. M. Mukul, V. Srivastava, S. Jade, and M. Mukul, “Uncertainties in the Shuttle Radar Topography Mission (SRTM) Heights: Insights from the Indian Himalaya and Peninsula,” Sci. Rep., vol. 7, Feb. 2017, DOI: 10.1038/srep41672. [CrossRef] [Google Scholar]
  46. K. Khasanov, “Evaluation of ASTER DEM and SRTM DEM data for determining the area and volume of the water reservoir,” IOP Conf. Ser. Mater. Sci. Eng., vol. 883, Jul. 2020, DOI: 10.1088/1757-899X/883/1/012063. [Google Scholar]
  47. L. Hawker, J. Neal, and P. Bates, “Accuracy assessment of the TanDEM-X 90 Digital Elevation Model for selected floodplain sites,” Remote Sens. Environ., 2019, DOI: 10.1016/j.rse.2019.111319. [Google Scholar]
  48. V. Vanthof and R. Kelly, “Water storage estimation in ungauged small reservoirs with the TanDEM-X DEM and multi-source satellite observations,” Remote Sens. Environ., 2019, DOI: 10.1016/j.rse.2019.111437. [Google Scholar]
  49. Y. Su and Q. Guo, “A practical method for SRTM DEM correction over vegetated mountain areas,” ISPRS J. Photogramm. Remote Sens., 2014, DOI: 10.1016/j.isprsjprs. (2013) [Google Scholar]
  50. K. Khasanov, РУКОВОДСТВО по определению площади и объема водохранилища с использованием геоинформационных технологий и дистанционного зондирования. (2020) [Google Scholar]
  51. M. Bakiev and K. Khasanov, “Comparison of digital elevation models for determining the area and volume of the water reservoir,” Int. J. Geoinformatics, vol. 17, no. 1, pp. 37–45, (2021) [Google Scholar]
  52. K. Khasanov, “Water Reservoir Area and Volume Determination using Geoinformation Technologies and Remote Sensing,” Int. J. Recent Technol. Eng., 2019, DOI: 10.35940/ijrte.d8089.118419. [Google Scholar]
  53. K. Khasanov, “Guidelines for Determining the Area and Volume of A Water Reservoir Using Geographic Information Technologies and Remote Sensing,” p. 32, (2020) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.