Open Access
Issue
E3S Web Conf.
Volume 269, 2021
2021 International Conference on Environmental Engineering, Agricultural Pollution and Hydraulical Studies (EEAPHS 2021)
Article Number 01004
Number of page(s) 8
Section Environmental Engineering
DOI https://doi.org/10.1051/e3sconf/202126901004
Published online 09 June 2021
  1. T. G. Hallam, C. E. Clark, R. R. Lassiter. Effects of toxicants on population: A qualitative approach I. Equilibrium environmental exposure. Ecol. Model., 18: 291-304 (1983) [CrossRef] [Google Scholar]
  2. T. G. Hallam, C. E. Clark, G. S. Jordan. Effects of toxicants on populations: A qualitative approach II. First order kinetics. J. Math. Biol., 18: 25-37 (1983) [CrossRef] [PubMed] [Google Scholar]
  3. T. G. Hallam, J. T. De Luna. Effects of toxicants on populations: A qualitative approach III. Environmental and food chain pathways. J. theor. Biol., 109: 411-429 (1984) [CrossRef] [Google Scholar]
  4. Z. X. Luo, Z. R. He. Optimal control of agedependent population hybrid system in a polluted environment. Appl. Math. Comput., 228: 68-76 (2014) [Google Scholar]
  5. H. Wang, F. M. Pan, M. Liu. Survival analysis of a stochastic service–resource mutualism model in a polluted environment with pulse toxicant input. Physica A, 521: 591-606 (2019) [CrossRef] [Google Scholar]
  6. G. D. Liu, X. Z. Meng. Optimal harvesting strategy for a stochastic mutualism system in a polluted environment with regime switching. Physica A, 536: 120893 (2019) [CrossRef] [Google Scholar]
  7. S. Anita. Analysis and Control of Age-Dependent Population Dynamics. Kluwer Academic Publishers, Dordrecht (2000) [Google Scholar]
  8. Y. J. Li, Z. H. Zhang, Y. F. Lv, et al. Optimal harvesting for a size-stage-structured population model. Nonlinear Anal. Real World Appl., 44: 616-630 (2018) [CrossRef] [Google Scholar]
  9. J. Liu, X. S. Wang. Numerical optimal control of a size-structured PDE model for metastatic cancer treatment. Math. Biosic., 314: 28-42 (2019) [CrossRef] [Google Scholar]
  10. A. Skonhoft, V. Friberg. Optimal harvesting in the presence of predation: An age-structured modelling approach. J. Environ. Manage., 227: 111-341 (2021) [Google Scholar]
  11. Z. R. He, R. Liu. Theory of optimal harvesting for a nonlinear size-structured population in periodic environments. Int. J. Biomath., 7: 1450046 (2014) [CrossRef] [Google Scholar]
  12. F. Q. Zhang, R. Liu, Y. M. Chen. Optimal harvesting in a periodic food chain model with size structures in predators. Appl. Math. Optim., 75: 229-251 (2017) [CrossRef] [Google Scholar]
  13. L. I. Anita, S. Anita. Note on some periodic optimal harvesting problems for age-structured population dynamics. Appl. Math. Comput., 276: 21-30 (2016) [Google Scholar]
  14. Y. Liu, X. L. Cheng, Z. R. He. On the optimal harvesting of size-structured population dynamics. Appl. Math. J. Chinese Univ., 28: 173-186 (2013) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.