Open Access
E3S Web Conf.
Volume 271, 2021
2021 2nd International Academic Conference on Energy Conservation, Environmental Protection and Energy Science (ICEPE 2021)
Article Number 03044
Number of page(s) 9
Section Research on Energy Chemistry and Chemical Simulation Performance
Published online 15 June 2021
  1. M. N. Esbin, et al., Overcoming the bottleneck to widespread testing: a rapid review of nucleic acid testing approaches for COVID-19 detection. Rna. ((2020)). 26(7): p. 771–783. [CrossRef] [PubMed] [Google Scholar]
  2. N. Zhu, et al., A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. ((2020)). 382(8): p. 727–733. [CrossRef] [PubMed] [Google Scholar]
  3. D. S. Ojeda, et al., Emergency response for evaluating SARS-CoV-2 immune status, seroprevalence and convalescent plasma in Argentina. PLoS Pathog. (2021). 17(1): p. e1009161. [CrossRef] [PubMed] [Google Scholar]
  4. M. Michel, et al., Evaluating ELISA, Immunofluorescence, and Lateral Flow Assay for SARS-CoV-2 Serologic Assays. Front Microbiol. (2020). 11: p. 597–529. [CrossRef] [PubMed] [Google Scholar]
  5. M. Chen, et al., Clinical applications of detecting IgG, IgM, or IgA antibody for the diagnosis of COVID-19: A meta-analysis and systematic review. Int J Infect Dis. (2021). [Google Scholar]
  6. Y. Galipeau, et al., Humoral Responses and Serological Assays in SARS-CoV-2 Infections. Front Immunol. (2020). 11: p. 610–688. [CrossRef] [PubMed] [Google Scholar]
  7. Y. Uwamino, et al., Evaluation of the usability of various rapid antibody tests in the diagnostic application for COVID-19. Ann Clin Biochem, (2021): p. 4563220984827. [Google Scholar]
  8. P. Zhou, et al., A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. (2020). 579(7798): p. 270–273. [CrossRef] [PubMed] [Google Scholar]
  9. A. Wu, et al., Genome Composition and Divergence of the Novel Coronavirus (2019-nCoV) Originating in China. Cell Host Microbe. (2020). 27(3): p. 325–328. [CrossRef] [PubMed] [Google Scholar]
  10. N. R. Sexton, et al., Homology-Based Identification of a Mutation in the Coronavirus RNA-Dependent RNA Polymerase That Confers Resistance to Multiple Mutagens. J Virol. (2016). 90(16): p. 7415–7428. [CrossRef] [PubMed] [Google Scholar]
  11. D. Wrapp, et al., Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. (2020). 367(6483): p. 1260–1263. [CrossRef] [PubMed] [Google Scholar]
  12. L. Zou, et al., SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. N Engl J Med. (2020). 382(12): p. 1177–1179. [CrossRef] [PubMed] [Google Scholar]
  13. C. Kim, et al., Comparison of nasopharyngeal and oropharyngeal swabs for the diagnosis of eight respiratory viruses by real-time reverse transcription-PCR assays. PLoS One, (2011). 6(6): p. e21610. [CrossRef] [PubMed] [Google Scholar]
  14. P. K. Chan, et al., Laboratory diagnosis of SARS. Emerg Infect Dis. (2004). 10(5): p. 825–31. [CrossRef] [PubMed] [Google Scholar]
  15. I. Paranjpe, et al., Clinical Characteristics of Hospitalized Covid-19 Patients in New York City. medRxiv, (2020). [Google Scholar]
  16. J. Zhu, et al., Clinicopathological characteristics of 8697 patients with COVID-19 in China: a meta-analysis. Fam Med Community Health, (2020). 8(2). [Google Scholar]
  17. Z. Wu and J. M. McGoogan, Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. Jama, (2020). 323(13): p. 1239–1242. [CrossRef] [PubMed] [Google Scholar]
  18. D. Wang, et al., Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. (2020). 323(11): p. 1061–1069. [CrossRef] [PubMed] [Google Scholar]
  19. M. R. Mehra, et al., Cardiovascular Disease, Drug Therapy, and Mortality in Covid-19. N Engl J Med, (2020). 382(25): p. e102. [CrossRef] [PubMed] [Google Scholar]
  20. W. M. Freeman, S. J. Walker, and K. E. Vrana, Quantitative RT-PCR: pitfalls and potential. Biotechniques. (1999). 26(1): p. 112–22, 124-5. [CrossRef] [PubMed] [Google Scholar]
  21. F. Wu, et al., A new coronavirus associated with human respiratory disease in China. Nature, (2020). 579(7798): p. 265–269. [CrossRef] [PubMed] [Google Scholar]
  22. C. Huang, et al., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. (2020). 395(10223): p. 497–506. [CrossRef] [PubMed] [Google Scholar]
  23. W. Zhang, et al., Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes. Emerg Microbes Infect. (2020). 9(1): p. 386–389. [CrossRef] [PubMed] [Google Scholar]
  24. F. Wolters, et al., Multi-center evaluation of cepheid xpert(R) xpress SARS-CoV-2 point-of-care test during the SARS-CoV-2 pandemic. J Clin Virol, (2020). 128: p. 104426. [CrossRef] [PubMed] [Google Scholar]
  25. Y. Wang, et al., Combination of RT-qPCR testing and clinical features for diagnosis of COVID-19 facilitates management of SARS-CoV-2 outbreak. J Med Virol. (2020). 92(6): p. 538–539. [CrossRef] [PubMed] [Google Scholar]
  26. S. Y. Li, et al., CRISPR-Cas12a-assisted nucleic acid detection. Cell Discov. (2018). 4: p. 20. [CrossRef] [PubMed] [Google Scholar]
  27. C. Myhrvold, et al., Field-deployable viral diagnostics using CRISPR-Cas13. Science. (2018). 360(6387): p. 444–448. [CrossRef] [PubMed] [Google Scholar]
  28. T. Ji, et al., Detection of COVID-19: A review of the current literature and future perspectives. Biosens Bioelectron. (2020). 166: p. 112455. [CrossRef] [PubMed] [Google Scholar]
  29. T. Notomi, et al., Loop-mediated isothermal amplification of DNA. Nucleic Acids Res, (2000). 28(12): p. E63. [CrossRef] [PubMed] [Google Scholar]
  30. M. Shen, et al., Recent advances and perspectives of nucleic acid detection for coronavirus. J Pharm Anal, (2020). 10(2): p. 97–101. [CrossRef] [PubMed] [Google Scholar]
  31. K. Nagamine, T. Hase, and T. Notomi, Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol Cell Probes, (2002). 16(3): p. 223–9. [CrossRef] [PubMed] [Google Scholar]
  32. Y. Kitagawa, et al., Evaluation of rapid diagnosis of novel coronavirus disease (COVID-19) using loop-mediated isothermal amplification. J Clin Virol, (2020). 129: p. 104446. [CrossRef] [PubMed] [Google Scholar]
  33. C. Yan, et al., Rapid and visual detection of 2019 novel coronavirus (SARS-CoV-2) by a reverse transcription loop-mediated isothermal amplification assay. Clin Microbiol Infect, (2020). 26(6): p. 773–779. [CrossRef] [PubMed] [Google Scholar]
  34. S. H. Lee, et al., One-Pot Reverse Transcriptional Loop-Mediated Isothermal Amplification (RT-LAMP) for Detecting MERS-CoV. Front Microbiol. (2016). 7: p. 2166. [Google Scholar]
  35. S. F. Hu, et al., Development of reverse-transcription loop-mediated isothermal amplification assay for rapid detection and differentiation of dengue virus serotypes 1-4. BMC Microbiol. (2015). 15: p. 265. [CrossRef] [PubMed] [Google Scholar]
  36. P. Rajko-Nenow, et al., A rapid RT-LAMP assay for the detection of all four lineages of Peste des Petits Ruminants Virus. J Virol Methods. (2019). 274: p. 113730. [CrossRef] [PubMed] [Google Scholar]
  37. F. W. Chow, et al., A Rapid, Simple, Inexpensive, and Mobile Colorimetric Assay COVID-19-LAMP for Mass On-Site Screening of COVID-19. Int J Mol Sci. (2020). 21(15). [Google Scholar]
  38. M. Dara and M. Talebzadeh, CRISPR/Cas as a Potential Diagnosis Technique for COVID-19. Avicenna J Med Biotechnol. (2020). 12(3): p. 201–202. [Google Scholar]
  39. P. Dashraath, et al., Coronavirus disease 2019 (COVID-19) pandemic and pregnancy. Am J Obstet Gynecol. (2020). 222(6): p. 521–531. [CrossRef] [PubMed] [Google Scholar]
  40. P. G. Wasilewski, et al., COVID-19 severity scoring systems in radiological imaging - a review. Pol J Radiol. (2020). 85: p. e361–e368. [CrossRef] [PubMed] [Google Scholar]
  41. F. Cui and H. S. Zhou, Diagnostic methods and potential portable biosensors for coronavirus disease 2019. Biosens Bioelectron. (2020). 165: p. 112349. [CrossRef] [PubMed] [Google Scholar]
  42. Z. Huang, et al., Characteristics and roles of severe acute respiratory syndrome coronavirus 2-specific antibodies in patients with different severities of coronavirus 19. Clin Exp Immunol. (2020). 202(2): p. 210–219. [CrossRef] [PubMed] [Google Scholar]
  43. D. O. Andrey, et al., Diagnostic accuracy of Augurix COVID-19 IgG serology rapid test. Eur J Clin Invest. (2020). 50(10): p. e13357. [CrossRef] [PubMed] [Google Scholar]
  44. B. Shen, et al., Clinical evaluation of a rapid colloidal gold immunochromatography assay for SARS-Cov-2 IgM/IgG. Am J Transl Res, (2020). 12(4): p. 1348–1354. [Google Scholar]
  45. N. Sethuraman, S. S. Jeremiah, and A. Ryo, Interpreting Diagnostic Tests for SARS-CoV-2. JAMA, (2020). 323(22): p. 2249–2251. [CrossRef] [PubMed] [Google Scholar]
  46. A. C. Walls, et al., Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell, (2020). 183(6): p. 1735. [CrossRef] [PubMed] [Google Scholar]
  47. B. Sun, et al., Kinetics of SARS-CoV-2 specific IgM and IgG responses in COVID-19 patients. EmergMicrobes Infect. (2020). 9(1): p. 940–948. [Google Scholar]
  48. X. Chi, et al., A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2. Science, (2020). 369(6504): p. 650–655. [CrossRef] [PubMed] [Google Scholar]
  49. M. Infantino, et al., Closing the serological gap in the diagnostic testing for COVID-19: The value of anti-SARS-CoV-2 IgA antibodies. J Med Virol. (2020). [Google Scholar]
  50. A. Padoan, et al., IgA-Ab response to spike glycoprotein of SARS-CoV-2 in patients with COVID-19: A longitudinal study. Clin Chim Acta, (2020). 507: p. 164–166. [CrossRef] [PubMed] [Google Scholar]
  51. N. M. A. Okba, et al., Severe Acute Respiratory Syndrome Coronavirus 2-Specific Antibody Responses in Coronavirus Disease Patients. Emerg Infect Dis. (2020). 26(7): p. 1478–1488. [CrossRef] [PubMed] [Google Scholar]
  52. C. H. Chau, J. D. Strope, and W. D. Figg, COVID-19 Clinical Diagnostics and Testing Technology. Pharmacotherapy, (2020). 40(8): p. 857–868. [CrossRef] [PubMed] [Google Scholar]
  53. S. J. R. da Silva, et al., Clinical and Laboratory Diagnosis of SARS-CoV-2, the Virus Causing COVID-19. ACS Infect Dis. (2020). 6(9): p. 2319–2336. [CrossRef] [PubMed] [Google Scholar]
  54. C. W. Farnsworth and N. W. Anderson, SARS-CoV-2 Serology: Much Hype, Little Data. Clin Chem, (2020). 66(7): p. 875–877. [CrossRef] [PubMed] [Google Scholar]
  55. S. Y. Chen, et al., Multicenter evaluation of two chemiluminescence and three lateral flow immunoassays for the diagnosis of COVID-19 and assessment of antibody dynamic responses to SARS-CoV-2 in Taiwan. Emerg Microbes Infect, (2020). 9(1): p. 2157–2168. [CrossRef] [PubMed] [Google Scholar]
  56. E. A. Berg and J. B. Fishman, Labeling Antibodies Using Colloidal Gold. Cold Spring Harb Protoc. (2020). 2020(4): p. 099333. [Google Scholar]
  57. Y. Pan, et al., Serological immunochromatographic approach in diagnosis with SARS-CoV-2 infected COVID-19 patients. J Infect. (2020). 81(1): p. e28–e32. [CrossRef] [Google Scholar]
  58. S. Dowlatshahi, E. Shabani, and M. J. Abdekhodaie, Serological assays and host antibody detection in coronavirus-related disease diagnosis. Arch Virol, (2021). [Google Scholar]
  59. N. Li, et al., Molecular diagnosis of COVID-19: Current situation and trend in China (Review). Exp TherMed. (2020). 20(5): p. 13. [Google Scholar]
  60. G. Yong, et al., Evaluation of the auxiliary diagnostic value of antibody assays for the detection of novel coronavirus (SARS-CoV-2). J Med Virol, (2020). 92(10): p. 1975–1979. [CrossRef] [PubMed] [Google Scholar]
  61. Y. Nasiri Khonsari and S. Sun, Recent trends in electrochemiluminescence aptasensors and their applications. Chem Commun (Camb), (2017). 53(65): p. 9042–9054. [CrossRef] [PubMed] [Google Scholar]
  62. Y. Sun and J. Lu, Chemiluminescence-based aptasensors for various target analytes. Luminescence. (2018). 33(8): p. 1298–1305. [CrossRef] [PubMed] [Google Scholar]
  63. J. Y. Choe, et al., Diagnostic performance of immunochromatography assay for rapid detection of IgM and IgG in coronavirus disease 2019. J Med Virol. (2020). 92(11): p. 2567–2572. [CrossRef] [PubMed] [Google Scholar]
  64. S. Lijia, et al., Serological chemiluminescence immunoassay for the diagnosis of SARS-CoV-2 infection. J Clin Lab Anal, (2020). 34(10): p. e23466. [CrossRef] [PubMed] [Google Scholar]
  65. S. Kaneko, et al., Clinical validation of an immunochromatographic SARS-Cov-2 IgM/IgG antibody assay with Japanese cohort. J Med Virol. (2020). [Google Scholar]
  66. I. Selingerova, et al., Interpretive discrepancies caused by target values inter-batch variations in chemiluminescence immunoassay for SARS-CoV-2 IgM/IgG by MAGLUMI. J Med Virol. (2020). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.