Open Access
Issue |
E3S Web Conf.
Volume 271, 2021
2021 2nd International Academic Conference on Energy Conservation, Environmental Protection and Energy Science (ICEPE 2021)
|
|
---|---|---|
Article Number | 03070 | |
Number of page(s) | 7 | |
Section | Research on Energy Chemistry and Chemical Simulation Performance | |
DOI | https://doi.org/10.1051/e3sconf/202127103070 | |
Published online | 15 June 2021 |
- Nobis A., Zalewski D., Waszkiewicz N.. Peripheral Markers of Depression. J Clin Med. 2020;9(12):3793. [CrossRef] [Google Scholar]
- Nemeroff C.B.. Recent advances in the neurobiology of depression. Psychopharmacology bulletin. 2002;36 Suppl 2:6–23. [PubMed] [Google Scholar]
- Sullivan P.F., Neale M.C., Kendler K.S.. Genetic epidemiology of major depression: review and metaanalysis. The American journal of psychiatry. 2000;157(10):1552–1562. [CrossRef] [PubMed] [Google Scholar]
- Hao Y., Ge H., Sun M., Gao Y.. Selecting an Appropriate Animal Model of Depression. Int J Mol Sci. 2019;20(19):4827. [CrossRef] [Google Scholar]
- Walther D.J., Peter J., Bashammakh S. et al. Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science (New York, N.Y.). 2003;299(5603):76 [CrossRef] [Google Scholar]
- Zhang X., Beaulieu J., Sotnikova T.D., Gainetdinov R.R., Caron M.G.. Tryptophan hydroxylase-2 controls brain serotonin synthesis. Science (New York, N.Y.). 2004;305(5681):217 [CrossRef] [Google Scholar]
- Schoenichen C., Bode C., Duerschmied D.. Role of platelet serotonin in innate immune cell recruitment. Frontiers in bioscience (Landmark edition). 2019;24:514–526 [CrossRef] [PubMed] [Google Scholar]
- Ma J., Xiao H., Yang Y. et al. Interaction of tryptophan hydroxylase 2 gene and life events in susceptibility to major depression in a Chinese Han population. J Affect Disorders. 2015;188:304–309 [CrossRef] [Google Scholar]
- McKinney J.A., Turel B., Winge I., Knappskog P.M., Haavik J.. Functional properties of missense variants of human tryptophan hydroxylase 2. Hum Mutat. 2009;30(5):787–794 [CrossRef] [PubMed] [Google Scholar]
- Cichon S., Winge I., Mattheisen M. et al. Brain-specific tryptophan hydroxylase 2 (TPH2): a functional Pro206Ser substitution and variation in the 5'-region are associated with bipolar affective disorder. Hum Mol Genet. 2008;17(1):87–97 [CrossRef] [PubMed] [Google Scholar]
- Chi S., Lee M.S.. Personalized Medicine Using Neuroimmunological Biomarkers in Depressive Disorders. J Pers Med. 2021;11(2):114. [CrossRef] [PubMed] [Google Scholar]
- Belmaker R.H., Agam G.. Major depressive disorder. The New England journal of medicine. 2008;358(1):55–68 [CrossRef] [PubMed] [Google Scholar]
- Ma K., Zhang H., Baloch Z.. Pathogenetic and Therapeutic Applications of Tumor Necrosis Factor-a (TNF-a) in Major Depressive Disorder: A Systematic Review. Int J Mol Sci. 2016;17(5):733. [CrossRef] [Google Scholar]
- Nobis A., Zalewski D., Waszkiewicz N.. Peripheral Markers of Depression. J Clin Med. 2020;9(12):3793. [CrossRef] [Google Scholar]
- Matsuo K., Harada K., Fujita Y., et al. Distinctive Neuroanatomical Substrates for Depression in Bipolar Disorder versus Major Depressive Disorder. Cereb Cortex. 2019;29(1):202–214. [CrossRef] [PubMed] [Google Scholar]
- McKinney J.A., Turel B., Winge I., Knappskog P.M., Haavik J.. Functional properties of missense variants of human tryptophan hydroxylase 2. Hum Mutat. 2009;30(5):787–794 [CrossRef] [PubMed] [Google Scholar]
- Pereira G.R.C., Tavares G.D.B., de Freitas M.C., De Mesquita J.F.. In silico analysis of the tryptophan hydroxylase 2 (TPH2) protein variants related to psychiatric disorders. Plos One. 2020;15(3):e0229730 [CrossRef] [PubMed] [Google Scholar]
- Ottenhof K.W., Sild M., Levesque M.L., Ruhe H.G., Booij L.. TPH2 polymorphisms across the spectrum of psychiatric morbidity: A systematic review and meta-analysis. Neurosci Biobehav R. 2018;92:29–42 [CrossRef] [Google Scholar]
- Pereira P.D.A., Romano-Silva M.A., Bicalho M.A.C. et al. Association between tryptophan hydroxylase-2 gene and late-onset depression. The American journal of geriatric psychiatry : official journal of the American Association for Geriatric Psychiatry. 2011;19(9):825–829 [CrossRef] [PubMed] [Google Scholar]
- Zill P., Buttner A., Eisenmenger W. et al. Single nucleotide polymorphism and haplotype analysis of a novel tryptophan hydroxylase isoform (TPH2) gene in suicide victims. Biol Psychiat. 2004;56(8):581–586 [CrossRef] [Google Scholar]
- Zupanc T., Pregelj P., Paska A.V.. Tryptophan hydroxylase 2 (TPH 2) single nucleotide polymorphisms, suicide, and alcohol-related suicide. Psychiat Danub. 2013;25 Suppl 2:S332–6 [Google Scholar]
- Zupanc T., Pregelj P., Tomori M., Komel R., Paska A.V.. TPH2 polymorphisms and alcohol-related suicide. Neurosci Lett. 2011;490(1):78–81 [CrossRef] [PubMed] [Google Scholar]
- Bach H., Arango V., Kassir S.A. et al. Alcoholics have more tryptophan hydroxylase 2 mRNA and protein in the dorsal and median raphe nuclei. Alcoholism, clinical and experimental research. 2014;38(7):1894–1901 [CrossRef] [Google Scholar]
- Bach-Mizrachi H., Underwood M.D., Tin A. et al. Elevated expression of tryptophan hydroxylase-2 mRNA at the neuronal level in the dorsal and median raphe nuclei of depressed suicides. Mol Psychiatr. 2008;13(5):507–513, 465 [CrossRef] [Google Scholar]
- Bach-Mizrachi H., Underwood M.D., Kassir S.A. et al. Neuronal tryptophan hydroxylase mRNA expression in the human dorsal and median raphe nuclei: major depression and suicide. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology. 2006;31(4):814–824 [CrossRef] [PubMed] [Google Scholar]
- Mosienko V., Beis D., Pasqualetti M. et al. Life without brain serotonin: reevaluation of serotonin function with mice deficient in brain serotonin synthesis. Behav Brain Res. 2015;277:78–88 [CrossRef] [PubMed] [Google Scholar]
- Deakin J.. The origins of '5-HT and mechanisms of defence' by Deakin and Graeff: a personal perspective. Journal of psychopharmacology (Oxford, England). 2013;27(12):1084–1089 [CrossRef] [Google Scholar]
- Carhart-Harris R.L., Nutt D.J.. Serotonin and brain function: a tale of two receptors. Journal of psychopharmacology (Oxford, England). 2017;31(9):1091–1120 [CrossRef] [Google Scholar]
- Jacobsen J.P.R., Siesser W.B., Sachs B.D. et al. Deficient serotonin neurotransmission and depression-likeserotonin biomarker alterations in tryptophan hydroxylase 2 (Tph2) loss-of-function mice. Mol Psychiatr. 2012;17(7):694–704 [CrossRef] [Google Scholar]
- Jahanshahi A., Le Maitre E., Temel Y. et al. Altered expression of neuronal tryptophan hydroxylase-2 mRNA in the dorsal and median raphe nuclei of three genetically modified mouse models relevant to depression and anxiety. J Chem Neuroanat. 2011;41(4):227–233 [CrossRef] [PubMed] [Google Scholar]
- Garbarino V.R., Gilman T.L., Daws L.C., Gould G.G.. Extreme enhancement or depletion of serotonin transporter function and serotonin availability in autism spectrum disorder. Pharmacol Res. 2019;140:85–99 [CrossRef] [PubMed] [Google Scholar]
- Aboagye B., Weber T., Merdian H.L. et al. Serotonin deficiency induced after brain maturation rescues consequences of early life adversity. Sci Rep-Uk. 2021;11(1):5368–5368 [CrossRef] [Google Scholar]
- Gutknecht L., Araragi N., Merker S. et al. Impacts of brain serotonin deficiency following Tph2 inactivation on development and raphe neuron serotonergic specification. Plos One. 2012;7(8):e43157–e43157 [CrossRef] [Google Scholar]
- Peeters D.G.A., de Boer S.F., Terneusen, A. et al. Enhanced aggressive phenotype of Tph2 knockout rats is associated with diminished 5-HT(1A) receptor sensitivity. Neuropharmacology. 2019;153:134–141 [CrossRef] [Google Scholar]
- Mlinar B., Montalbano A., Waider J., Lesch K., Corradetti R.. Increased functional coupling of 5-HT(1A) autoreceptors to GIRK channels in Tph2(-/-) mice. European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology. 2017;27(12):1258–1267 [CrossRef] [Google Scholar]
- Mosienko V., Matthes S., Hirth N. et al. Adaptive changes in serotonin metabolism preserve normal behavior in mice with reduced TPH2 activity. Neuropharmacology. 2014;85:73–80 [CrossRef] [Google Scholar]
- Lieb M.W., Weidner M., Arnold M.R. et al. Effects of maternal separation on serotonergic systems in the dorsal and median raphe nuclei of adult male Tph2-deficient mice. Behav Brain Res. 2019;373:112086 [CrossRef] [Google Scholar]
- Koshimizu H., Hirata N., Takao K. et al. Comprehensive behavioral analysis and quantification of brain free amino acids of C57BL/6J congenic mice carrying the 1473G allele in tryptophan hydroxylase-2. Neuropsychopharmacology reports. 2019;39(1):56–60 [CrossRef] [Google Scholar]
- Bernaras E., Jaureguizar J., Garaigordobil M.. Child and Adolescent Depression: A Review of Theories, Evaluation Instruments, Prevention Programs, and Treatments. Front Psychol. 2019;10:543. [CrossRef] [Google Scholar]
- Akechi T., Okuyama T., Onishi J., Morita T., Furukawa T.A.. WITHDRAWN: Psychotherapy for depression among incurable cancer patients. Cochrane Database Syst Rev. 2018;11(11):CD005537. [Google Scholar]
- Nicole Geschwind et al. Positive cognitive behavior therapy in the treatment of depression: A randomized order within-subject comparison with traditional cognitive behavior therapy[J]. Behaviour Research and Therapy, 2019, 116 : 119–130. [CrossRef] [Google Scholar]
- Health Quality Ontario. Psychotherapy for Major Depressive Disorder and Generalized Anxiety Disorder: A Health Technology Assessment. Ont Health Technol Assess Ser. 2017;17(15):1–167. [Google Scholar]
- Gadd Shannon and Tak Casey and Bulaj Grzegorz. Developing music streaming as an adjunct digital therapy for depression: A survey study to assess support from key stakeholders[J]. Journal of Affective Disorders Reports, 2020, 2. [Google Scholar]
- Rosa Claudio D. et al. Forest therapy can prevent and treat depression: Evidence from meta-analyses[J]. Urban Forestry & Urban Greening, 2021, 57. [Google Scholar]
- Ushakova V.M. et al. [Molecular Biological Aspects of Depressive Disorders: A Modern View].[J]. Molekuliarnaia biologiia, 2020, 54(5) : 725–749. [Google Scholar]
- Yohn C.N., Gergues M.M., Samuels B.A.. The role of 5-HT receptors in depression. Mol Brain. 2017;10(1):28. [CrossRef] [PubMed] [Google Scholar]
- Ijaz S., Davies P., Williams C.J., Kessler D., Lewis G., Wiles N.. Psychological therapies for treatmentresistant depression in adults. Cochrane Database Syst Rev. 2018;5(5):CD010558. [Google Scholar]
- Banzi R., Cusi C., Randazzo C., Sterzi R., Tedesco D., Moja L.. Selective serotonin reuptake inhibitors (SSRIs) and serotonin-norepinephrine reuptake inhibitors (SNRIs) for the prevention of tension-type headache in adults. Cochrane Database Syst Rev. 2015;2015(5):CD011681. [Google Scholar]
- Dale E., Pehrson A.L., Jeyarajah T., et al. Effects of serotonin in the hippocampus: how SSRIs and multimodal antidepressants might regulate pyramidal cell function. CNS Spectr. 2016;21(2):143–161. [CrossRef] [Google Scholar]
- Narek Israelyan et al. Effects of Serotonin and Slow-Release 5-Hydroxytryptophan on Gastrointestinal Motility in a Mouse Model of Depression[J]. Gastroenterology, 2019, 157(2) : 507–521. [CrossRef] [Google Scholar]
- Nanjapp Muralidhara Shankarapura et al. Use of Selective Serotonin and Norepinephrine Reuptake Inhibitors (SNRIs) in the treatment of Autism Spectrum Disorder (ASD), Comorbid psychiatric disorders and ASD-associated symptoms: A Clinical Review.[J]. CNS spectrums, 2020: 21–23. [Google Scholar]
- Compagner Chad and Lester Corey and Dorsch Michael. Sentiment Analysis of Online Reviews for Selective Serotonin Reuptake Inhibitors and Serotonin-Norepinephrine Reuptake Inhibitors[J]. Pharmacy, 2021, 9(1) : 27–27. [CrossRef] [Google Scholar]
- Jie Li et al. SNRIs achieve faster antidepressant effects than SSRIs by elevating the concentrations of dopamine in the forebrain[J]. Neuropharmacology, 2020, 177. [Google Scholar]
- Roberts Clark and Sahakian Barbara J. and Robbins Trevor W.. Psychological mechanisms and functions of 5-HT and SSRIs in potential therapeutic change: Lessons from the serotonergic modulation of action selection, learning, affect, and social cognition[J]. Neuroscience & Biobehavioral Reviews, 2020, 119 : 138–167. [CrossRef] [Google Scholar]
- Pink Aimee E. et al. The use of repetitive transcranial magnetic stimulation (rTMS) following traumatic brain injury (TBI): A scoping review[J]. Neuropsychological Rehabilitation, 2021, 31(3) : 479–505. [CrossRef] [Google Scholar]
- McClintock S.M., Reti I.M., Carpenter L.L., et al. Consensus Recommendations for the Clinical Application of Repetitive Transcranial Magnetic Stimulation (rTMS) in the Treatment of Depression. J Clin Psychiatry. 2018;79(1):16cs10905. [CrossRef] [Google Scholar]
- Health Quality Ontario. Repetitive Transcranial Magnetic Stimulation for Treatment-Resistant Depression: A Systematic Review and MetaAnalysis of Randomized Controlled Trials. Ont Health Technol Assess Ser. 2016;16(5):1–66. [Google Scholar]
- Toledo Roberta Stroher et al. rTMS induces analgesia and modulates neuroinflammation and neuroplasticity in neuropathic pain model rats[J]. Brain Research, 2021, 147427. [CrossRef] [Google Scholar]
- Lefaucheur J., Andre-obadia, N., Antal, A. et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation(rTMS) [J]. Clinical Neurophysiology, 2014, 125(11): 2150–2206. [CrossRef] [Google Scholar]
- Kerner N., Prudic J.. Current electroconvulsive therapy practice and research in the geriatric population. Neuropsychiatry (London). 2014;4(1):33–54. [CrossRef] [Google Scholar]
- Cretaz E., Brunoni A.R., Lafer B.. Magnetic Seizure Therapy for Unipolar and Bipolar Depression: A Systematic Review. Neural Plast. 2015;2015:521398. [CrossRef] [Google Scholar]
- Li M., Yao X., Sun L., et al. Effects of Electroconvulsive Therapy on Depression and Its Potential Mechanism. Front Psychol. 2020;11:80. [CrossRef] [Google Scholar]
- O'Reilly, M., Federoff H.J., Fong, Y., et al. Gene therapy: charting a future course--summary of a National Institutes of Health Workshop, April 12, 2013. Hum Gene Ther. 2014;25(6):488–497. [CrossRef] [Google Scholar]
- Kumar S.R., Markusic D.M., Biswas M., High K.A., Herzog R.W.. Clinical development of gene therapy: results and lessons from recent successes. Mol Ther Methods Clin Dev. 2016;3:16034. [CrossRef] [Google Scholar]
- Cartier N., Hacein-Bey-Abina, S., Bartholomae, C.C. et al. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science (New York, N.Y.). 2009;326(5954):818–823 [CrossRef] [PubMed] [Google Scholar]
- Hwu W., Muramatsu S., Tseng S. et al. Gene therapy for aromatic L-amino acid decarboxylase deficiency. Sci Transl Med. 2012;4(134):134ra61 [Google Scholar]
- Tipanee J., Chai Y.C., Van den Driessche T., Chuah M.K.. Preclinical and clinical advances in transposon-based gene therapy. Biosci Rep. 2017;37(6):BSR20160614. Published 2017 Dec 5. [CrossRef] [Google Scholar]
- Yu D., Khan O.F., Suva M.L., et al. Multiplexed RNAi therapy against brain tumor-initiating cells via lipopolymeric nanoparticle infusion delays glioblastoma progression. Proc Natl Acad Sci U S A. 2017;114(30):E6147–E6156. [CrossRef] [Google Scholar]
- Wu S.Y., Lopez-Berestein G., Calin G.A., Sood A.K.. RNAi therapies: drugging the undruggable. Sci Transl Med. 2014;6(240):240ps7. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.