Open Access
Issue
E3S Web Conf.
Volume 271, 2021
2021 2nd International Academic Conference on Energy Conservation, Environmental Protection and Energy Science (ICEPE 2021)
Article Number 04043
Number of page(s) 6
Section Environmental Materials and Solid Waste Recycling Technology
DOI https://doi.org/10.1051/e3sconf/202127104043
Published online 15 June 2021
  1. Herskovic, A.; Martz, K.; Al-Sarraf, M.; Leichman, L.; Brindle, J.; Vaitkevicius, V.; Cooper, J.; Byhardt, R.; Davis, L.; Emami, B., Combined chemotherapy and radiotherapy compared with radiotherapy alone in patients with cancer of the esophagus. Mew England Journal of Medicine 1992, 326 (24), 1593–1598. [CrossRef] [Google Scholar]
  2. Rosenberg, S. A.; Aebersold, P.; Cornetta, K.; Kasid, A.; Morgan, R. A.; Moen, R.; Karson, E. M.; Lotze, M. T.; Yang, J. C.; Topalian, S. L., Gene transfer into humans—immunotherapy of patients with advanced melanoma, using tumorinfiltrating lymphocytes modified by retroviral gene transduction. Mew England Journal of Medicine 1990, 323 (9), 570–578. [CrossRef] [Google Scholar]
  3. Cotrim, A. P.; Baum, B. J., Gene therapy: some history, applications, problems, and prospects. Toxicologic pathology 2008, 36 (1), 97–103. [CrossRef] [PubMed] [Google Scholar]
  4. Marzbali, M. Y.; Khosroushahi, A. Y., Polymeric micelles as mighty nanocarriers for cancer gene therapy: a review. Cancer chemotherapy and pharmacology 2017, 79 (4), 637–649. [CrossRef] [PubMed] [Google Scholar]
  5. Sung, Y.; Kim, S., Recent advances in the development of gene delivery systems. Biomaterials research 2019, 23 (1), 8. [CrossRef] [PubMed] [Google Scholar]
  6. Lundstrom, K., Viral vectors in gene therapy. Diseases 2018, 6 (2), 42. [CrossRef] [Google Scholar]
  7. Thomas, T.; Tajmir-Riahi, H.-A.; Pillai, C., Biodegradable polymers for gene delivery. Molecules 2019, 24 (20), 37–44. [CrossRef] [Google Scholar]
  8. Li, W.; Zhou, J.; Xu, Y., Study of the in vitro cytotoxicity testing of medical devices. Biomedical reports 2015, 3 (5), 617–620. [CrossRef] [PubMed] [Google Scholar]
  9. Kean, T.; Roth, S.; Thanou, M., Trimethylated chitosans as non-viral gene delivery vectors: cytotoxicity and transfection efficiency. Journal of Controlled Release 2005, 103 (3), 643–653. [CrossRef] [Google Scholar]
  10. Ziello, J. E.; Huang, Y.; Jovin, I. S., Cellular endocytosis and gene delivery. Molecular Medicine 2010, 16 (5-6), 222–229. [CrossRef] [Google Scholar]
  11. Wiseman, J.; Goddard, C.; McLelland, D.; Colledge, W., A comparison of linear and branched polyethylenimine (PEI) with DCChol/DOPE liposomes for gene delivery to epithelial cells in vitro and in vivo. Gene therapy 2003, 10 (19), 1654–1662. [CrossRef] [PubMed] [Google Scholar]
  12. Morimoto, K.; Nishikawa, M.; Kawakami, S.; Nakano, T.; Hattori, Y.; Fumoto, S.; Yamashita, F.; Hashida, M., Molecular weight-dependent gene transfection activity of unmodified and galactosylated polyethyleneimine on hepatoma cells and mouse liver. Molecular Therapy 2003, 7 (2), 254–261. [CrossRef] [Google Scholar]
  13. Strand, S. P.; Lelu, S.; Reitan, N. K.; de Lange Davies, C.; Artursson, P.; Vârum, K.M., Molecular design of chitosan gene delivery systems with an optimized balance between polyplex stability and polyplex unpacking. Biomaterials 2010, 31 (5), 975–987. [CrossRef] [PubMed] [Google Scholar]
  14. Dincer, S.; Türk, M.; Piskin, E., Intelligent polymers as nonviral vectors. Gene therapy 2005, 12 (1), S139–S145. [CrossRef] [PubMed] [Google Scholar]
  15. Liang, G. F.; Zhu, Y. L.; Sun, B.; Hu, F. H.; Tian, T.; Li, S. C.; Xiao, Z. D., PLGA-based gene delivering nanoparticle enhance suppression effect of miRNA in HePG2 cells. Nanoscale research letters 2011, 6 (1), 447. [CrossRef] [PubMed] [Google Scholar]
  16. Figueiredo, M.; Esenaliev, R., PLGA nanoparticles for ultrasound-mediated gene delivery to solid tumors. Journal of drug delivery 2012, 2012. [Google Scholar]
  17. Saranya, N.; Moorthi, A.; Saravanan, S.; Devi, M. P.; Selvamurugan, N., Chitosan and its derivatives for gene delivery. International journal of biological macromolecules 2011, 48 (2), 234–238. [CrossRef] [PubMed] [Google Scholar]
  18. Erbacher, P.; Zou, S.; Bettinger, T.; Steffan, A.-M.; Remy, J.-S., Chitosan-based vector/DNA complexes for gene delivery: biophysical characteristics and transfection ability. Pharmaceutical research 1998, 15 (9), 1332–1339. [CrossRef] [PubMed] [Google Scholar]
  19. Bose, R. J.; Lee, S.-H.; Park, H., Lipid-based surface engineering of PLGA nanoparticles for drug and gene delivery applications. Biomaterials Research 2016, 20 (1), 34. [CrossRef] [PubMed] [Google Scholar]
  20. Patil, Y.; Panyam, J., Polymeric nanoparticles for siRNA delivery and gene silencing. International journal of pharmaceutics 2009, 367 (1-2), 195–203. [CrossRef] [PubMed] [Google Scholar]
  21. Scientific, T. F., Off-Target Effects: Disturbing the silence of RNA interference (RNAi). Thermo Fisher Scientific Teach review 2010. [Google Scholar]
  22. Nam, J.-P.; Nah, J.-W., Target gene delivery from targeting ligand conjugated chitosan-PEI copolymer for cancer therapy. Carbohydrate polymers 2016, 135, 153–161. [CrossRef] [PubMed] [Google Scholar]
  23. Chen, C.-K.; Huang, P.-K.; Law, W.-C.; Chu, C.-H.; Chen, N.-T.; Lo, L.-W., Biodegradable polymers for gene-delivery applications. International journal of nanomedicine 2020, 15, 2131. [CrossRef] [PubMed] [Google Scholar]
  24. Liu, Z.; Zhang, Z.; Zhou, C.; Jiao, Y., Hydrophobic modifications of cationic polymers for gene delivery. Progress in Polymer Science 2010, 35 (9), 1144–1162. [CrossRef] [Google Scholar]
  25. Jackson, A. L.; Burchard, J.; Leake, D.; Reynolds, A.; Schelter, J.; Guo, J.; Johnson, J. M.; Lim, L.; Karpilow, J.; Nichols, K., Position-specific chemical modification of siRNAs reduces “off-target” transcript silencing. Rna 2006, 12 (7), 1197–1205. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.