Open Access
Issue
E3S Web Conf.
Volume 288, 2021
International Symposium “Sustainable Energy and Power Engineering 2021” (SUSE-2021)
Article Number 01026
Number of page(s) 4
DOI https://doi.org/10.1051/e3sconf/202128801026
Published online 14 July 2021
  1. Thong V.D. and D.V. Hieu. Weak and strong convergence theorems for variational inequality problems. Numerical Algorithms 78. 1045–1060 (2018) [Google Scholar]
  2. Gibali, A., Reich, S., Zalas, R.: Outer approximation methods for solving variational inequalities in Hilbert space. Optimization 66, 417–437 (2017) [Google Scholar]
  3. Hieu, D.V., Anh, P.K., Muu, L.D.: Modified hybrid projection methods for finding common solutions to variational inequality problems. Comput. Optim. Appl. 66, 75–96 [Google Scholar]
  4. Cai G., Gibali A., Lyiola O. S., Shehu Y. A new double-projection method for solving variational inequalities in Banach spaces. J Optim Theory Appl, 2018, 178: 219-239 [Google Scholar]
  5. N. V. Banichuk. Determination of the shape of curvilinear cracks by the small parameter method. Academy of Sciences of the USSR. 1970. N° 2. S. 130–137. [Google Scholar]
  6. Jouymandi Z., Moradlou F. Extragradient methods for solving equilibrium problems, variational inequalities, and fixed point problems. Numer Funct Anal Optim, 2017, 38: 1391–1409 [Google Scholar]
  7. Liu Z.H., Migorski S., Zeng S.D. Partial differential variational inequalities involving nonlocal boundary conditions in Banach spaces. J Differ Equ. 2017; 263: 3989–4006. DOI: 10.1016/j.jde.2017.05.010 [Google Scholar]
  8. Nguyen T.V.A., Tran D.K. On the differential variational inequalities of parabolic-elliptic type. Math Method Appl Sci. 2017. DOI: 10.1002/mma.4334 [Google Scholar]
  9. Zeng S.D., Liu Z., Migorski S. A class of fractional differential hemivariational inequalities with application to contact problem. Z Angew Math Phys. 2018; 69: 36. pages 23. DOI: 10.1007/s00033-018-0929-6 [Google Scholar]
  10. A. I. Furtsev, “About the Contact of a Thin Obstacle and a Plate Containing a Thin Inclusion,” Sibir. Zh. Chist. Prikl. Mat. 17 (4), 94–111 (2017) [Google Scholar]
  11. A. M. Khludnev, “On Modeling Thin Inclusions in Elastic Bodies with a Damage Parameter,” Math. Mech. Solids. 2018; doi https://doi.org/10.1177/1081286518796472 [Google Scholar]
  12. Giovanardi B., Formaggia L., Scotti A., Zunino P. Unfitted FEM for modelling the interaction of multiple fractures in a poroelastic medium. In: SPA Bordas, E. Burman, M.G. Larson, M.A. Olshanskii, eds. Geometrically Unfitted Finite Element Methods and Applications. Cham, Switzerland: Springer International Publishing; 2017: 331–352. [Google Scholar]
  13. Caffarelli L. A., Friedman A. The obstacle problem for the biharmonic operator. Ann scuola norm. super Pisa. 1979, Ser. IV.- vol. VI, no. 1, - P. 151–184. [Google Scholar]
  14. Morozov N.F. Mathematical problems in the theory of cracks. Moscow: Nauka. 1984. 255 p. [Google Scholar]
  15. Khludnev A.M. Optimal control of a variational inequality in a contact problem for a plate. Dynamics of a continuous medium. Novosibirsk, 1988. - Issue. 87. -- S. 122–135. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.