Open Access
E3S Web Conf.
Volume 290, 2021
2021 3rd International Conference on Geoscience and Environmental Chemistry (ICGEC 2021)
Article Number 01010
Number of page(s) 4
Section Environmental Chemistry and Chemical Technology Application
Published online 14 July 2021
  1. Boonmak, J., Youngme, S., Chaichit,N., van Albada, G.A., Reedijk, J. (2009) Series of Copper(II) Coordination Polymers Containing Aminopyrazine and Different Carboxylato Bridges: Syntheses, Structures and Magnetic Properties. Cryst. Growth Des., 9: 3318-3326. [Google Scholar]
  2. Cati, D.S., Ribas, J., Ribas-Arino, J., Stoeckli-Evans. H. (2004) Self-Assembly of CuII and NiII [2 × 2] Grid Complexes and a Binuclear CuII Complex with a New Semiflexible Substituted Pyrazine Ligand: Multiple Anion Encapsulation and Magnetic Properties Inorg. Chem., 43: 1021-1030. [Google Scholar]
  3. Zhang, X.M., Fang. R.Q. (2005) Hydrothermal Syntheses and Structures of Two Mixed-Valence Copper(I,II) 2-Pyrazinecarboxylate Coordination Polymers. Inorg. Chem., 44: 3955-2959. [Google Scholar]
  4. Nather, C., Wriedt, M., Jess.I. (2003) Dimorphism of a New CuI Coordination Polymer: Synthesis, Crystal Structures and Properties of Catena[CuI(2-Iodopyrazine-N)] and Poly[CuI(μ2-2-Iodopyrazine-N,N‘)]. Inorg. Chem., 42: 2391-2397. [Google Scholar]
  5. Hausmann, J., Jameson, G.B., Brooker. S. (2003). Control of molecular architecture by the degree of deprotonation: self-assembled di- and tetranuclear copper (II) complexes of N,N′-bis(2-pyridylmethyl)pyrazine-2,3-dicarboxamide. 24: Chem. Commun., 2992-2993. [Google Scholar]
  6. (a) Hausmann J, Jameson G B, Brooker S. Control of molecular architecture by the degree of deprotonation : self-assembled di-and tetranuclear copper(II) complexes of N,N-bis(2-pyridylmethyl)pyrazine-2,3-dicarboxamide. (2003) Chem. Commun. 2992-2993. (b)Hausmann J, Brooker S. Control of molecular architecture by use of the appropriate ligand isomer: a mononuclear “corner-type” versus a tetranuclear[2x2] grid-type cobalt(III) complex. (2004) Chem. Commun.1530-1531. (c)Klingele J, Boas J F, Pilbrow J R, Moubaraki B, Murray K S, Berry K J, Hunter K A, Jameson G B, Boyd P D, Brooker S. A [2x2] nickel(II) grid and a copper(II) square result from differing binding modes of a pyrazine-based diamide ligand. (2007) Dalton. Trans. 633-645 [Google Scholar]
  7. Cockriel D L, McClain J M, Patel K C, Ullon R, Hubin T J. The design and synthesis of pyrazine amide ligands for the “tiles” approach to molecular weaving with octahedral metal ions (2008) Inorg. Chem. Commun, 11:1-4. [Google Scholar]
  8. Khavasi H R, Sasan K, Pirouzmand M, Ebrahimi S N. Highly Efficient Isobutyraldehyde-Mediated Exoxidation of Cyclic Alkenes with Dioxygen Catalyzed by a Novel Dimeric Maganese (II) Complex Containing an Easy-to-Prepare Flexible Carboxamide Ligand. (2009) Inorg.Chem. 48, 5593-5595. [Google Scholar]
  9. Khavasi H R, Sadegh B M, Temperature-Dependent Supramolecular Motif in Coordination Compounds. (2010) Inorg. Chem. 49: 5356-5358. [Google Scholar]
  10. Houser R P, Wang Z D, Powell D R, Hubin T J. Copper(I) and copper(II) complexes with pyrazine-containing pyridylalkylamide ligands N-(pyridin-2-ylmethyl)pyrazine-2-carboxamide and N-(2-pyridin-2-yl)ethyl)pyrazine-2-carboxamide Journal of Coordination Chemistry, 2013,66:4080-4092. [Google Scholar]
  11. Cowan, M. G.; Olguin, J.; Narayanaswamy, S.; Tallon, J. L.; Brooker. S. (2012). Reversible switching of a cobalt complex by thermal, pressure, and electrochemical stimuli: abrupt, complete, hysterestic spin crossover. J. Am. Chem. Soc. 134: 2892-2894. [Google Scholar]
  12. Hellyer, R.M.; Larsen, D.S.; Brooker. S. Cobalt and silver complexes of terdentate pyrazine-based amide ligands and assemble of monocobalt building blocks through a silver connector.(2009). Eur. J. Inorg. Chem., 9:1162-1171. [Google Scholar]
  13. Wang Z., Xu Q., Ni H., Liu X. Crystal structure of bis((pyrazin-2-ylmethyl)(pyrazine carbonyl)amido-κ3N,N′,N′′)copper(II), C20H16CuN10O2. (2017) Z. Kristallogr. N.Cryst.Struc t. 232:835-836. [Google Scholar]
  14. Sheldrick G M, SHELXTL NT, version 5.1, Program for Solution and Refinement of Crystal Structures, University of Göttingen, Göttingen, Germany, 1997. [Google Scholar]
  15. Dolomanov O V, Bourhis L J, Gildea R J, Howard J A K, Puschmann H. A complete structure solution, refinement and analysis program. (2009) J. Appl. Crystallogr. 42:339-341. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.