Open Access
Issue
E3S Web Conf.
Volume 290, 2021
2021 3rd International Conference on Geoscience and Environmental Chemistry (ICGEC 2021)
Article Number 03027
Number of page(s) 4
Section Environmental Energy Protection and Energy-Saving Sustainability
DOI https://doi.org/10.1051/e3sconf/202129003027
Published online 14 July 2021
  1. Zdunić, Gordana, Menković, Nebojša, Jadranin, Milka, Novaković, Miroslav, Savikin, Katarina P, Živković, Jelena Č. Phenolic compounds and carotenoids in pumpkin fruit and related traditional products[J]. Institute of Chemistry, Technology and Metallurgy, 70(2016):429-433. [Google Scholar]
  2. S Sharma, T V R Rao. Nutritional quality characteristics of pumpkin fruit as revealed by its biochemical analysis[J]. Int Food Res J, 20(2013):2309–2316. [Google Scholar]
  3. C H Azevedo-Meleiro, D B Rodriguez-Amaya. Qualitative and quantitative differences in carotenoid composition among Cucurbita moschata, Cucurbita maxima, and Cucurbita pepo[J]. J Agric Food Chemistry, 55(2007):4027–4033. [Google Scholar]
  4. C Kurz, R Carle, A Schieber. HPLC-DAD-MSn characterisation of carotenoids from apricots and pumpkins for the evaluation of fruit product authenticity[J]. Food Chemistry, 110(2008):522–530. [Google Scholar]
  5. A Nawirska-Olszanska, A Biesiada, A, Sokol-Letowska, A Z Kucharska. Characteristics of organic acids in the fruit of different pumpkin species[J]. Food Chemistry, 148(2014):415–419. [Google Scholar]
  6. C L Zhou, W Liu, J Zhao, C Yuan, Y Song, D Chen, Y Y Ni, Q H Li. The effect of high hydrostatic pressure on the microbiological quality and physical–chemical characteristics of pumpkin (Cucurbita maxima Duch.) during refrigerated storage[J]. Innov Food Sci Emerg Technol. 21(2014):24–34. [Google Scholar]
  7. M Y Kim, E J Kim,Y N Kim, C Choi, B H Lee. Comparison of the chemical compositions and nutritive values of various pumpkin (Cucurbitaceae) species and parts[J]. Nutr Res Pract, 6 (2012):21–27. [Google Scholar]
  8. X Li, L Zhang, Z Peng. The Impact of Ultrasonic Treatment on Blueberry Wine Anthocyanin Color and its In-vitro Anti-Oxidant Capacity[J]. Food Chemistry, 333(2020):127455. [Google Scholar]
  9. V Santhirasegaram, Z Razali, C Somasundram. Effects of thermal treatment and sonication on quality attributes of Chokanan mango (Mangifera indica L.) juice[J]. Ultrasonics Sonochemistry, 20(2013):1276-1282. [Google Scholar]
  10. W F Gomes, B K Tiwari, Ó Rodriguez, E S de Brito. Effect of ultrasound followed by high pressure processing on prebiotic cranberry juice[J]. Food chemistry, 218(2017):261-268. [Google Scholar]
  11. R M Aadil, X A Zeng, Z H Zhang, M S Wang. Thermosonication: A potential technique that influences the quality of grapefruit juice[J]. International Journal of Food Science & Technology, 50(2015):1275–1282. [Google Scholar]
  12. P Khandpur, P R Gogate. Understanding the effect of novel approaches based on ultrasound on sensory profile of orange juice[J]. Ultrasonics Sonochemistry, 27(2015):87–95. [Google Scholar]
  13. D I Arnon. Copper enzymes in isolated chloroplasts. polyphenoloxidase in Beta vulgaris[J]. Plant Physiology, 24(1949):1-15. [Google Scholar]
  14. [14] L E Ordóñez-Santos, J Martínez-Girón, M EArias-Jaramillo. Effect of ultrasound treatment on visual color, vitamin C, total phenols, and carotenoids content in Cape gooseberry juice[J]. Food Chemistry, 233(2017):96–100. [Google Scholar]
  15. L M Carrillo-Lopez, I A Garcia-Galicia, J M Tirado-Gallegos et al. Recent advances in the application of ultrasound in dairy products: Effect on functional, physical, chemical, microbiological and sensory properties[J]. Ultrasonics Sonochemistry, 73(2021):105467. [Google Scholar]
  16. J Wang, SK Vanga, V Raghavan. High-intensity ultrasound processing of Kiwifruit juice: Effects on the ascorbic acid, total phenolics, flavonoids and antioxidant capacity[J]. LWT, 107(2019):299–307. [Google Scholar]
  17. Francisca das Chagas do Amaral Souza a, A Lgsm, A Kdob et al. Thermosonication applied on camu–camu nectars processing: Effect on bioactive compounds and quality parameters[J]. Food and Bioproducts Processing, 116(2019):212-218. [Google Scholar]
  18. T J Mason, E Joyce, S S Phull, J P Lorimer. Potential uses of ultrasound in thebiological decontamination of water[J]. Ultrason Sonochem, 10(2003):319–323. [Google Scholar]
  19. T G Leighton. What is ultrasound? [J]. Prog Biophys Mol Biol, 93(2007):3–83. [Google Scholar]
  20. A R Jambrak, V Lelas, Z Herceg, M Badanjak, Z Werner. Application of high-power ultrasound in drying of fruits and vegetables | Primjenaultrazvukavisokesnage u sušenjuvoc´aipovrc´a, Kem. U Ind, Chem. Chem. Eng. 59(2010):169–177. [Google Scholar]
  21. J Wang, S K Vanga, V Raghavan. High-intensity ultrasound processing of kiwifruit juice: Effects on the microstructure, pectin, carbohydrates and rheological properties. Food Chemistry, 313(2020)126121. [Google Scholar]
  22. A Starek, Z Kobus, A Sagan. Influence of ultrasound on selected microorganisms, chemical and structural changes in fresh tomato juice[J]. Scientific Reports, 11(1) 2021. [Google Scholar]
  23. R Bhat, N S B C Kamaruddin, LMin-Tze, AAKarim. Sonication improves kasturi lime (Citrus microcarpa) juice quality. Ultrason. Sonochem, 18(2011):1295– 1300. [Google Scholar]
  24. M Abid et al. Effect of ultrasound on different quality parameters of apple juice. Ultrason Sonochem, 20(2013):1182–1187. [Google Scholar]
  25. L Eduardo Ordonez-Santos, J Martinez-Giron, M Enith Arias-Jaramillo. Effect of ultrasound treatment on visual color, vitamin C, total phenols, and carotenoids content in Cape gooseberry juice[J]. Food Chemistry, 233(2017):96-100. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.