Open Access
Issue
E3S Web Conf.
Volume 293, 2021
2021 3rd Global Conference on Ecological Environment and Civil Engineering (GCEECE 2021)
Article Number 01001
Number of page(s) 4
Section Ecological Environment Protection and Pollution Control
DOI https://doi.org/10.1051/e3sconf/202129301001
Published online 23 July 2021
  1. Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z. C., Freney, J.R., Martinelli, L. A., Seitzinger, S. P., Sutton, M. A. (2008). Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 320, 889–982. [CrossRef] [PubMed] [Google Scholar]
  2. Aber, J., McDowell, W., Nadelhoffer, K., Magill, A., Berntson, G., Kamakea, M., McNulty, S., Currie, W., Rustad, L., Fernandez, I. (1998). Nitrogen saturation in temperate forest ecosystems - Hypotheses revisited. Bioscience, 48, 912–993. [Google Scholar]
  3. Lu, X. K., Mao, Q. G., Gilliam, F. S., Luo, Y. Q., Mo, J. M. (2015). Nitrogen deposition contributes to soil acidification in tropical ecosystems. Global Change Biology, 20, 3790–3801. [Google Scholar]
  4. Wang, Y. S., Xue, M., Zheng, X. H., Ji, B. M., Du, R., Wang, Y. F. (2005). Effects of environmental factors on N2O emission from and CH4 uptake by the typical grasslands in the Inner Mongolia, Chemosphere, 58(2), 205–215. [PubMed] [Google Scholar]
  5. Hao, T.X., Song, L., Goulding, K., Zhang, F. S. and Liu, X. J. (2018). Cumulative and partially recoverable impacts of nitrogen addition on a temperate steppe. Ecology Application, 28, 237–248. [Google Scholar]
  6. Zhang, W., Liu, C. Y., Zheng, X. H., Fu, Y. F., Hu, X. X., Cao, G. M., ButterbachBahl, K. (2014). The increasing distribution area of zokor mounds weaken greenhouse gas uptakes by alpine meadows in the Qinghai-Tibetan Plateau. Soil Biology and Biochemistry, 71, 105–112. [Google Scholar]
  7. Smith, K. A., Ball, T., Conen, F., Dobbie, K., Massheder, J. R. (2003). Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes. European Journal of Soil Science, 69(1), 10–20. [Google Scholar]
  8. Zhang, W., Mo, J. M., Yu, G. R., Fang, Y. T., Li, D. J., Lu, X. K., Wang, H. (2008). Emissions of nitrous oxide from three tropical forests in Southern China in response to simulated nitrogen deposition. Plant and Soil, 306(1-2), 221–236. [Google Scholar]
  9. Aronson, E. L., Helliker, B. R. (2010). Methane flux in non-wetland soils in response to nitrogen addition: a meta-analysis. Ecology, 91, 3242–3251,. [PubMed] [Google Scholar]
  10. Yue, P. Li, K. H., Gong, Y. M., Hu, Y. K., Mohammat, A., Christie, P., Liu, X. J. (2016). A five-year study of the impact of nitrogen addition on methane uptake in alpine grassland. Scientific Reports, 6, 32064. [PubMed] [Google Scholar]
  11. Tilman, D., Knops, J., Wedin, D., Reich, P., Ritchie, M., Siemann E. (1997). The influence of functional diversity and composition on ecosystem processes. Science, 277(5330), 1300–1302. [Google Scholar]
  12. Zeng, J., Liu, X. J., Song, L., Lin, X. G., Zhang, H. Y., Shen, C. C., Chu, H. Y. (2016). Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition. Soil Biology and Biochemistry, 92, 41–49. [Google Scholar]
  13. Xu, W., Zhao, Y.H., Liu, X. J., Dore, A. J., Zhang, L., Liu, L., Cheng M. M. (2018). Atmospheric nitrogen deposition in the Yangtze River basin: Spatial pattern and source attribution. Environmental Pollution, 232, 546–555. [Google Scholar]
  14. Liu, C. Y., Zheng, X. H., Zhou, Z. X., Han, S. H., Wang, Y. H., Wang, K., Liang, W. G., Li, M., Chen, D. L., Yang, Z. P. (2010). Nitrous oxide and nitric oxide emissions from an irrigated cotton field in Northern China, Plant and Soil, 322, 123–134. [Google Scholar]
  15. Jiang, X., Cao, L., Zhang, R. (2014). Changes of labile and recalcitrant carbon pools under nitrogen addition in a city lawn soil. Journal of Soils Sediments, 14, 515–524. [Google Scholar]
  16. Shang Q.Y., Yang X. X., Gao C. M., Wu P. P., Liu, J. J., Xu, Y.C., Shen, Q.S., Zou, J.W., Guo, S.W. (2011). Net annual global warming potential and greenhouse gas intensity in Chinese double rice-cropping systems: a 3-year field measurement in longterm fertilizer experiments. Global Change Biology, 17(25), 2196–2210. [Google Scholar]
  17. Zhu, X., Burger, M., Doane, T. A. and Horwath, W. R. (2013). Ammonia oxidation pathways and nitrifier denitrification are significant sources of N2O and NO under low oxygen availability. Proceedings of the National Academy of Sciences of United States of America, 110(16), 6328–6333. [Google Scholar]
  18. Ying, J. Y., Li, X. X., Wang, N. N., Lan, Z. C., He, J. Z., Bai, Y. F. (2017). Contrasting effects of nitrogen forms and soil pH on ammonia oxidizing microorganisms and their responses to long-term nitrogen fertilization in a typical steppe ecosystem. Soil Biology and Biochemistry. 107, 10–18. [Google Scholar]
  19. Chen, S., Hao, T. X., Goulding K., Misselbrook, T., Liu, X. J. (2019). Impact of 13-years of nitrogen addition on nitrous oxide and methane fluxes and ecosystem respiration in a temperate grassland. Environmental Pollution, 252, 657–681. 10.1016/j.envpol.2019.03.069 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.