Open Access
E3S Web Conf.
Volume 300, 2021
2021 2nd International Conference on Energy, Power and Environmental System Engineering (ICEPESE2021)
Article Number 01006
Number of page(s) 12
Section Energy and Power Engineering
Published online 06 August 2021
  1. A. Yousefi, M. Birouk, Investigation of natural gas energy fraction and injection timing on the performance and emissions of a dual-fuel engine with pre-combustion chamber under low engine load[J]. Applied Energy, Volume 189, 2017, 492-505, 0306-2619 [Google Scholar]
  2. S.S. Liu, W.L. Jiao, P. Zhang, Conjugate numerical analysis on bundle effects for integrated heat transfer of LNG ambient air vaporizer[J]. Applied Thermal Engineering, 2020, 180. [Google Scholar]
  3. D.C. Denkenberger, M. J. Brandemuehl, J. Zhai, J.M. Pearce, Finite Difference Heat Exchanger Model: Flow Maldistribution with Thermal Coupling[J]. Heat Transfer Engineering, 2021, 42(11). [Google Scholar]
  4. Y.Y. Bae, A new formulation of variable turbulent Prandtl number for heat transfer to supercritical fluids. International Journal of Heat and Mass Transfer. Volume 92, 2016, 792-806, 0017-9310. [Google Scholar]
  5. W. Qu, I. Mudawar, Experimental and numerical study of pressure drop and heat transfer in asingle-phase micro-channel heat sink. Intemational Journal of Heat and Mass Transfer, 2002, 45, 2549-2565. [Google Scholar]
  6. D.D. Jia, Z.C. Zhao, Y. Zhang, Y.M. Zhou, Y.R. Zhang, L. Zhang, Numerical Study of Flow and Heat Transfer Characteristics of Supercritical LNG in Micro-channel of Printed Circuit Vaporizer[J]. Ship Engineering, 2017, 39(05):35-40.(In Chinese) [Google Scholar]
  7. D.O. Ariyo, T. Bello-Ochende, Constructal design of two-phase stacked microchannel heat exchangers for cooling at high heat flux[J]. International Communications in Heat and Mass Transfer, 2021, 125. [Google Scholar]
  8. F. Zhou, W. Zhou, C.Y. Zhang, Q.F. Qiu, D. Yuan, X.Y. Chu, Experimental and numerical studies on heat transfer enhancement of microchannel heat exchanger embedded with different shape micropillars[J]. Applied Thermal Engineering, 2020, 175. [Google Scholar]
  9. Z.Y. Guo, Z.X. Li. Size effect on single-phase channel flow and heat transfer at microscale. International Journal of Heat and Fluid Flow, 2003, 24(3), 284-298. [Google Scholar]
  10. P. Gao, S. L. Peterson, M. Favre-Marinet, Scale effects on hydrodynamics and heat transfer intwo-dimensional mini and microchannels. International Journal of Thermal Science, 2002, 41, 1017-1027. [Google Scholar]
  11. C.X. Lin, M. A. Ebadian, The effects of inlet turbulence on the development of fluid flow and heat transfer in a helically coiled pipe[J]. International Journal of Heat & Mass Transfer, 1999, 42(4):739-751. [Google Scholar]
  12. L. J. Li, C. X. Lin, M. A. Ebadian, Turbulent heat transfer to near-critical water in a heated curved pipe under the conditions of mixed convection[J]. International Journal of Heat & Mass Transfer, 1999, 42(16):3147-3158. [Google Scholar]
  13. M. B. Sharabi, W. Ambrosini, S. He, Prediction of unstable behaviour in a heated channel with water at supercritical pressure by CFD models[J]. Annals of Nuclear Energy, 2008, 35(5):767-782. [Google Scholar]
  14. Z.C Zhao, K. Zhao, D.D. Jia, P.P. Jiang, R.D. Shen, Numerical Investigation on the Flow and Heat Transfer Characteristics of Supercritical Liquefied Natural Gas in an Airfoil Fin Printed Circuit Heat Exchanger[J]. Energies, 2017, 10(11). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.