Open Access
Issue
E3S Web Conf.
Volume 308, 2021
2021 6th International Conference on Materials Science, Energy Technology and Environmental Engineering (MSETEE 2021)
Article Number 01012
Number of page(s) 6
Section Energy Resource Development and Energy Saving Technology
DOI https://doi.org/10.1051/e3sconf/202130801012
Published online 27 September 2021
  1. Hu, G., Miu, CL., Zhang, W.J. (2021) Research on thermal runaway of lithium ion battery in vehicle, Advanced Technology of Electrical Engineering and Energy, 02:51–59. [Google Scholar]
  2. Xu, Q., Kong, QS., Liu, ZH., Wang, X.J. (2014) Cellulose/Polysulfonamide Composite Membrane as a High Performance Lithium-Ion Battery Separator, ACS Sustainable Chem. Eng. 2: 194–199. [Google Scholar]
  3. Xu, Q., Kong, QS., Liu, ZH., Zhang, J.J. (2014) Polydopamine-coated cellulose microfibrillated membrane as high performance lithium-ion battery separator, RSC Advance, 16:1–5. [Google Scholar]
  4. Zhang, JJ., Liu, ZH., Kong, QS., Zhang, C.J. (2013) Renewable and Superior Thermal-Resistant Cellulose-Based Composite Nonwoven as Lithium-Ion Battery Separator, ACS Appl. Mater. Interfaces, 5:128–134. [Google Scholar]
  5. Zhu, WY., Shao, WG., Wang, X.H. (2021) Application Status and Development of High Temperature Resistant Lithium Ion Battery Diaphragm Material, China Plastics [Google Scholar]
  6. Yuan, X., Liu, H., Zhang, J. Lithium-ion batteries: advanced materials and technologies, p.206–207, p.210, p.213-216. [Google Scholar]
  7. Ding, L., Xu, R., Pu, L., Kang, J. (2019) Pore formation and evolution mechanism during biaxial stretching of β-iPP used for lithium-ion batteries separator. Materials & Design, 179: 107880 [Google Scholar]
  8. Lee, H., Yanılmaz, M., Toprakçı, O., Fu, K., Zhang, X. (2014) A Review and Recent Developments in Membrane Separators for Rechargeable Lithium-ion Batteries, Energy Environ. Sci., 7: 3857–3886 [Google Scholar]
  9. Yu, T.H. (1996) Processing and Structure–Property Behavior of Microporous Polyethylene-From Resin to final Film, Ph.D. Dissertation, Virginia Polytechnic Institute and State University. [Google Scholar]
  10. YamamuraY., OoizumiS., Yamamoto K. (2001) Separator for rechargeable lithium-ion batteries with high puncture strength and high melt rupture temperature, Nitto Denko Technical Report, 39:39 [Google Scholar]
  11. Xu Mao, Hu Shiru, Guan Jiayu, Sun Xianming, Wu Wei, Zhu Wei, Zhang Xian, Ma Zimian, Han Qi, Liu Shangqi, Polypropylene microporous film, patent US. 5134174A [Google Scholar]
  12. Kaimai Norimitsu, Takita Kotaro, Kono Koichi, Funaoka Hidehiko, Method of producing highly permeable microporous polyolefin membrane, patent US 6153133A [Google Scholar]
  13. Kim Ki-Jae, Park Min-Sil, Yim Taeeun, Yu Ji-Sang, Kim Young-Jun, Electron-beam-irradiated polyethylene membrane with improved electrochemical and thermal properties for lithium-ion batteries, J Appl Electrochem (2014) 44:345–352 [Google Scholar]
  14. Ryou Myung-Hyun, Lee Yong-Min, Park Jung-Ki, Choi Jang-Wook, Mussel-Inspired Polydopamine-Treated Polyethylene Separators for High-Power Li-Ion Batteries, Advanced Materials, 24 May 2011 [Google Scholar]
  15. Song K.W., Kim C.K.. Coating with macroporous polyarylate via a nonsolvent induced phase separation process for enhancement of polyethylene separator thermal stability, Journal of Membrane Science Volume 352, Issues 1–2, 15 April 2010, Pages 239–246 [Google Scholar]
  16. Xiao Wei, Wang Shaoliang, Zhao Lina, Liu Jianguo, Yan Chuanwei. Advance in ceramic-based composite separator for lithium-ion battery[J]. Chemial Industry and Engineering Progress, 2015, 34 (2): 456–462. [Google Scholar]
  17. Jeong H S, Choi E S, Lee S Y. Composition ratio-dependent structural evolution of SiO2/poly (vinylidene fluoride hexafluoropropylene)-coated poly (ethylene terephthalate) nonwoven composite separators for lithium-ion batteries[J]. Electrochimica Acta, 2012, 86: 317- 322. [Google Scholar]
  18. Guidotti, R.A. (1999) Evaluation of Fiber Separators for Use in Thermal Batteries. Office of Scientific & Technical Information Technical Reports, 1999 [Google Scholar]
  19. Wu, Y., Wang, F., Li, X. (2018) Fabrication of a Graphene Oxide/nanoscale Aramid Fiber Composite Membrane with Improved Hydrophilicity and Mechanical Strength via a Fast - drying Method Using Absolute Ethanol as Proton Donor. Journal of Materials Science, 53: 383–392. [Google Scholar]
  20. Kim, Y., Wu, X. (2020) Fabrication of Triboelectric Nanogenerators Based on Electrospun Polyimide Nanofibers Membrane. Scientific Reports, 10:1–9. [Google Scholar]
  21. Kuriyama, I., Shirakashi, K. (1964) Thermal Shrinkage Behavior of the Heated Polyethylene Terephthalate Fibers. Sen’i Gakkaishi, 20: 347–355. [Google Scholar]
  22. Zhao, Z., Wang, D., Yu, L. (2014) Preparation and Property of High Heat - Resistant Ceramic Composited PET Separator, Proceedings of SAE - China Congress 2014:Selected Papers [Google Scholar]
  23. Li, H., Wu, D. B., Wu, J. (2017) Flexible, high-wettability and fire-resistant separators based on hydroxyapatite nanowires for advanced lithium-ion batteries, Adv. Mater. 29: 1703548. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.