Open Access
E3S Web Conf.
Volume 309, 2021
3rd International Conference on Design and Manufacturing Aspects for Sustainable Energy (ICMED-ICMPC 2021)
Article Number 01163
Number of page(s) 7
Published online 07 October 2021
  1. P. A. G. M. Amarasinghe and S. K. Abeygunawardane, “Application of Machine Learning Algorithms for Solar Power Forecasting in Sri Lanka” (2nd International Conference On Electrical Engineering (EECon), Colombo, Sri Lanka, 87 2018). [Google Scholar]
  2. M. Z. Hassan, M. E. K. Ali, A. B. M. S. Ali and J. Kumar, “Forecasting Day-Ahead Solar Radiation Using Machine Learning Approach” (4th Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE), Mana Island, Fiji, 252 2017). [Google Scholar]
  3. A. Bajpai and M. Duchon, “A Hybrid Approach of Solar Power Forecasting Using Machine Learning” (3rd International Conference on Smart Grid and Smart Cities (ICSGSC), 108 2019). [Google Scholar]
  4. A. Khan, R. Bhatnagar, V. Masrani and V. B. Lobo, “A Comparative Study on Solar Power Forecasting using Ensemble Learning, “ (4th International Conference on Trends in Electronics and Informatics (ICOEI), 224 2020). [Google Scholar]
  5. Khan, P.W.; Byun, Y.-C.; Lee, S.-J.; Kang, D.-H.; Kang, J.-Y.; Park, H.-S. Energies, 13, 4870 (2020). [Google Scholar]
  6. Faquir, Sanaa & Yahyaouy, Ali & Tairi, H. & Sabor, Jalal. International Journal of Fuzzy System Applications. 4, 10 (2015). [Google Scholar]
  7. Aler R., Martín R., Valls J.M., Galván I.M. Intelligent Distributed Computing VIII. Studies in Computational Intelligence, vol 570 (2015). [Google Scholar]
  8. Y. Wang, G. Cao, S. Mao and R. M. Nelms, “Analysis of solar generation and weather data in smart grid with simultaneous inference of nonlinear time series, “ (IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), 600 2015). [Google Scholar]
  9. Carrera B, Kim K. Sensors (Basel). 20, 3129 (2020). [Google Scholar]
  10. Jawaid F, NazirJunejo K. Predicting daily mean solar power using machine learning regression techniques. (Sixth International Conference on Innovative Computing Technology (INTECH) 355 2016). [Google Scholar]
  11. Batcha RR, Geetha MK. A survey on IOT based on renewable energy for efficient energy conservation using machine learning approaches. (3rd International Conference on Emerging Technologies in Computer Engineering: Machine Learning and Internet of Things (ICETCE) 123 2020). [Google Scholar]
  12. Li, Zhaoxuan & Rahman, Sm Mahbobur & Vega, Rolando & Dong, Bing. Energies. 9, 55 (2016). [Google Scholar]
  13. Lai JP, Chang YM, Chen CH, Pai PF. Applied Sciences; 10, 5975 (2020). [Google Scholar]
  14. Brahma, B.; Wadhvani, R. Symmetry, 12, 1830 (2020). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.