Open Access
Issue
E3S Web Conf.
Volume 309, 2021
3rd International Conference on Design and Manufacturing Aspects for Sustainable Energy (ICMED-ICMPC 2021)
Article Number 01167
Number of page(s) 9
DOI https://doi.org/10.1051/e3sconf/202130901167
Published online 07 October 2021
  1. Erick, A. O., & Folly, K. A. Power Flow Management in Electric Vehicles Charging Station Using Reinforcement Learning. IEEE Congress on Evolutionary Computation (CEC). p1–8, (2020). [Google Scholar]
  2. Jinil, N., & Reka, S. Deep Learning method to predict Electric Vehicle power requirements and optimizing power distribution. Fifth International Conference on Electrical Energy Systems (ICEES). p1–5, (2019). [Google Scholar]
  3. Indragandhi, V., & L, A. K. Artificial Intelligence Based Speed Control of SRM for Hybrid Electric Vehicles. 8th International Conference on Power and Energy Systems (ICPES). p65–69, (2018). [Google Scholar]
  4. Mangali V.G., Shravan Kumar P., Awaar V.K., Jugge P, DSP based Voltage Source Inverter for an application of Induction Motor control, E3S Web of Conferences, (2020). 10.1051/e3sconf/202018401057 [Google Scholar]
  5. Rao, N.S., Selwin Mich Priyadharson, A.S.M., Praveen, J., Simulation of artificial intelligent controller based DVR for power quality improvement, Procedia Computer Science, 47 (C), pp. 153–167, (2015). [Google Scholar]
  6. Grigorescu, S., Trasnea, B., Cocias, T., & Macesanu, G. A survey of deep learning techniques for autonomous driving. Journal of Field Robotics. p1–28, (2019). [Google Scholar]
  7. Asaii, B., Gosden, D. F., & Sathia kumar, S. (n.d.). A new technique for highly efficient sensor-less control of electric vehicles by using neural networks. Power Electronics in Transportation, IEEE, p143–149, (2005). [Google Scholar]
  8. Talamini, J., Bartoli, A., De Lorenzo, A. D., & Medvet, E. On the Impact of the Rules on Autonomous Drive Learning. p1–14, (2020) [Google Scholar]
  9. Todd Litman. Autonomous Vehicle Implementation Predictions. Victoria Transport Policy Institute, p1–46, (2021). [Google Scholar]
  10. Chenyi Chen. (.). Deep Learning for Self-driving Car. PAVE, p1–32. [Google Scholar]
  11. Kelleher. Research Study on Reuse and Recycling of Batteries Employed in electric vehicles. Kelleher research study on reuse and recycling of batteries employed in electric vehicles, p1–206, (2009). [Google Scholar]
  12. Kogan, M., Jardine, P. T., & Givigi, S. N. Architecture for testing learning-based autonomous vehicle control design. 2018 Annual IEEE International Systems Conference (SysCon). pP1–7, (2018). [Google Scholar]
  13. Li Haiying, Jia Yongli, Zhang Dan, & Qiu xinghong. Application of electric vehicle battery intelligent monitoring and management system. 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific). p1–5, (2014). [Google Scholar]
  14. Rao, Q., & Frtunikj, J. Deep learning for self-driving cars. Proceedings of the 1st International Workshop on Software Engineering for AI in Autonomous Systems -SEFAIS ’18. p34–38, (2018). [Google Scholar]
  15. Dhanke Jyoti Atul, R. Kamalraj, G. Ramesh, K. Sakthidasan Sankaran, Sudhir Sharma, Syed Khasim, A machine learning based IoT for providing an intrusion detection system for security, Microprocessors and Microsystems, Volume 82, 103741, (2021). [Google Scholar]
  16. Ramesh G. Automated Identification and Classification of Blur Images, Duplicate Images Using Open CV. In: Luhach A.K., Jat D.S., Bin Ghazali K.H., Gao XZ., Lingras P. (eds) Advanced Informatics for Computing Research. ICAICR 2020. Communications in Computer and Information Science, vol 1393. Springer, Singapore (2020). [Google Scholar]
  17. Julio A. Sanguesa, Vicente Torres-Sanz, Piedad Garrido, Francisco J. Martinez and Johann M. Marquez-Barja. A Review on Electric Vehicles: Technologies and Challenges. Smart Cities, p372–404, (2021) [Google Scholar]
  18. Kora, P., Kalva, S.R., Hybrid Bacterial Foraging and Particle Swarm Optimization for detecting Bundle Branch Block, SpringerPlus, 4 (1), art. no. 481, 19 p., (2015). [PubMed] [Google Scholar]
  19. Prasanna Lakshmi, K., Reddy, C.R.K. A survey on different trends in Data Streams, ICNIT 2010 - 2010 International Conference on Networking and Information Technology, art. no. 5508473, pp. 451–455, (2010). [Google Scholar]
  20. Swaraja K, Medical image region based watermarking for secured telemedicine, Multimedia Tools and Applications, 77 (21), pp. 28249–28280, (2018). [Google Scholar]
  21. Kumar, S.K., Reddy, P.D.K., Ramesh, G., Maddumala, V.R. Image transformation technique using steganography methods using LWT technique, Traitement du Signal, 36 (3), pp. 233–237, (2019). [Google Scholar]
  22. Dhanalaxmi, B., Apparao Naidu, G., Anuradha, K., Adaptive PSO based association rule mining technique for software defect classification using ANN, Procedia Computer Science, 46, pp. 432–442, (2015). [Google Scholar]
  23. Beaudet, A., Larouche, F., Amouzegar, K., Bouchard, P., & Zaghib, K. Key Challenges and Opportunities for Recycling Electric Vehicle Battery Materials. Sustainability, p1–12, (2020). [Google Scholar]
  24. Yamamoto, D., & Suganuma, N. Localization for autonomous driving on urban road. 2015 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS). pp.452–453, (2015). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.