Open Access
E3S Web Conf.
Volume 310, 2021
Annual International Scientific Conference “Spatial Data: Science, Research and Technology 2021”
Article Number 03008
Number of page(s) 28
Section Geodesy. Navigation. GLONASS - GNSS
Published online 15 October 2021
  1. B. Tapley, S. Bettadpur, M. Watkins, C. Reigber, The Gravity Recovery and Climate Experiment: Mission overview and early results, Geophysical Research Letters 31(9): 4 (2004) DOI:10.1029/2004GL019920 [Google Scholar]
  2. M. Drinkwater, R. Floberghagen, R. Haagmans, D. Muzi, A. Popescu, GOCE: ESA’s first earth explorer core mission, Space Science Reviews, 108, pp. 419-432, (2003) DOI:10.1023/A:1026104216284 [Google Scholar]
  3. D. Beggan, S. Macmillan, J. Brown, J. Grindrod, Quantifying Global and Random Uncertainties in High Resolution Global Geomagnetic Field Models Used for Directional Drilling, SPE Drilling & Completion, pp. 1-10, (2021) DOI:10.2118/204038-pa [Google Scholar]
  4. B. Meyer, A. Chulliat, R. Saltus, Derivation and Error Analysis of the Earth Magnetic Anomaly Grid at 2 Arc-Minute Resolution Version 3 (EMAG2v3), Geochemistry, Geophysics, Geosystems, 18, (2017) DOI:10.1002/2017GC007280. [Google Scholar]
  5. [Google Scholar]
  6. Earth parameters 1990. Reference document. Moscow: Military Topographic Directorate of the General Staff of the Armed Forces of the Russian Federation, 2018. [Google Scholar]
  7. [Google Scholar]
  8. O.V. Denisenko, I.S. Silvestrov, V.F. Fateev, R.A. Davlatov, Possibilities of forming a unified geocentric coordinate system, Almanac of modern metrology, No. 15, pp. 92112, (2018) (In Russian) [Google Scholar]
  9. L.S. Sugaipova, Development and research of methods for multi-scale modeling of the geopotential, Dissertation for the degree of Doctor of Technical Sciences: 25.00.32, MIIGAiK, Moscow, 325 p., (2018) (In Russian) [Google Scholar]
  10. D.S. Bobrov, Development of methods and means for creating navigational gravity maps, Dissertation for the degree of Candidate of Technical Sciences, All-Russian Scientific Research Institute of Physical-Technical and Radio Engineering Measurements, Mendeleevo, (2020) (In Russian) [Google Scholar]
  11. A.P. Yuzefovich, Gravity field and its study, M: Publishing house MIGAiK, 192 p., (2014) (In Russian) [Google Scholar]
  12. [Google Scholar]
  13. [Google Scholar]
  14. D.S. Bobrov, Investigation of the informativeness of the gravity field for indoor navigation, Scientific Assembly of the International Association of Geodesy, June 28 – July 2, Beijin, China (2021) [Google Scholar]
  15. [Google Scholar]
  16. I.A. Bunin, E.N. Kalish, D.A. Nosov, M.G. Smirnov, Yu.F. Stus, Field absolute laser ballistic gravimeter, Avtometriya, V. 46, No. 5, pp. 94–102, (2010) (In Russian) [Google Scholar]
  17. L.F. Vitushkin, F.F. Karpeshin, E.P. Krivtsov, P.P. Krolitsky, V.V. Nalivaev, O.A. Orlov, M.M. Khaleev, State primary special standard of acceleration for gravimetry GET 190-2019, Measuring equipment, No. 7, pp. 3-8, (2020), (In Russian) DOI: [Google Scholar]
  18. [Google Scholar]
  19. A.A. Golovan, V.V. Klevtsov, I.V. Koneshov, Yu.L. Smoller, S. Sh. Yurist, Peculiarities of using the gravimetric complex GT-2a in problems of airborne gravimetry, Physics of the Earth, No. 4, pp. 127–134, (2018) [Google Scholar]
  20. A. Krasnov, A. Sokolov, L. Elinson, A new air-sea shelf gravimeter of the Chekan series, Gyroscopy and Navigation, 5, pp. 131-137, (2014), DOI:10.1134/S2075108714030067 [Google Scholar]
  21. P. Gillot, B. Cheng, A. Imanaliev, S. Merlet, F. Pereira dos Santos, The LNE-SYRTE cold atom gravimeter, 1-3, (2016), DOI:10.1109/EFTF.2016.7477832 [Google Scholar]
  22. Zhou Min-Kang, Duan Xiao-Chun, Chen Le-Le, Luo Qin, Xu Yao-Yao, Hu ZhongKun, Micro-Gal level gravity measurements with cold atom interferometry, Chinese Physics B, 24(5): 050401, (2015), DOI: 10.1088/1674-1056/24/5/050401. [Google Scholar]
  23. X. Wu, Z. Pagel, S. Bola, T. Nguyen, F. Zi, D. Scheirer, H. Müller Holger, Gravity surveys using a mobile atom interferometer. Science Advances, 5, eaax0800, (2019), DOI:10.1126/sciadv.aax0800. [Google Scholar]
  24. M.S. Aleinikov, V.N. Baryshev, I.Yu. Blinov, D.S. Kupalov, G.V. Osipenko, Prospects for the development of a sensitive atomic interferometer based on cold rubidium atoms, Measuring equipment, No. 7, pp. 9-12, (2020) DOI: (In Russian) [Google Scholar]
  25. C. Hirt, Automatic determination of vertical deflections in real time by combining GPS and digital zenith camera for solving the GPS-height-problem, Proc., 14th Int. Technical Meeting of the Satellite Division of the Institute of Navigation, Institute of Navigation, Alexandria, 2540–2551, (2001) [Google Scholar]
  26. M.M. Murzabekov, V.F. Fateev, A.V. Pruglo, S.S. Ravdin, The results of astromeasurements of the deflection of vertical using a new measurement method, Almanac of modern metrology, No. 2 (22), pp. 42-56, (2020) (In Russian) [Google Scholar]
  27. Method for measuring the deflection of vertical and a device for its implementation: US Pat. 2750999 Rus. Federation. No. 2020139586; declared 12/01/20; publ. 07.07.21, Bul. No. 19 [Google Scholar]
  28. R. Eötvös, D. Pekár, E. Fekete, Beiträge zum Gesetze der Proportionalität von Trägheit und Gravität, Annalen der Physik, 373, 11–66, (2006), DOI:10.1002/andp.19223730903 [Google Scholar]
  29. L. Volgyesi, G. Szondy, G. Péter, B. Kiss, G. Barnafoldi, L. Deák, É. Csaba, E. Fenyvesi, G. Grof, L. Somlai, P. Harangozó, P. Levai, P. Ván, Remeasurement of the Eötvös experiment status and first results, 042, (2019), DOI:10.22323/1.353.0042. [Google Scholar]
  30. Resolution of the International Association of Geodesy No. 1 “On the definition and implementation of the international reference system of heights”, Prague, Czech Republic, June 22 – July 2, 2015. [Google Scholar]
  31. J. Müller, D. Dirkx, S.M. Kopeikin, G. Lion, High Performance Clocks and Gravity Field Determination, Space Sci Rev 214:5, (2018), DOI 10.1007/s11214-017-0431-z. [Google Scholar]
  32. L.D. Landau, E.M. Lifshits, Field theory, -M.: Nauka, 460 p., (1967) (In Russian) [Google Scholar]
  33. V.F. Fateev, Relativistic metrology of near-earth space-time, Monograph, Mendeleevo: FSUE “VNIIFTRI”, 439 p., (2017) (In Russian) [Google Scholar]
  34. G. Jacopo, K. Silvio, V. Stefan, H. Sebastian e.a. Geodesy and metrology with a transportable optical clock, Nature Physics, 14, (2018), DOI:10.1038/s41567-0170042-3. [Google Scholar]
  35. T. Masao, U. Ichiro, O. Noriaki, Y. Toshihiro, K. Kensuke, S. Hisaaki, K. Hidetoshi, Test of general relativity by a pair of transportable optical lattice clocks, Nature Photonics, 14, 1-5, (2020), DOI:10.1038/s41566-020-0619-8. [Google Scholar]
  36. V.F. Fateev, A.I. Zharikov, V.P. Sysoev, E.A. Rybakov, F.R. Smirnov, Measurement Of The Difference In The Earths Gravitational Potentials With The Help Of A Transportable Quantum Clock, Doklady Earth Sciences, 472(1): 91-94, (2017), DOI:10.1134/S1028334X17010147 [Google Scholar]
  37. V. F. Fateev, E. A. Rybakov, Experimental Verification of the Quantum Level on a Mobile Quantum Clocks, Doklady Physics, 66(1): 17–19, (2021), DOI:10.1134/S1028335820110038 [Google Scholar]
  38. V.F. Fateev, E.A. Rybakov, F.R. Smirnov, A Method Of Relativistic Synchronization Of Moving Atomic Clocks And Experimental Verification Thereof, Technical Physics Letters, 43(5): 456-459, (2017), DOI:10.1134/S1063785017050182 [Google Scholar]
  39. V.F. Fateev, Yu.F. Smirnov, A.I. Zharikov, E.A. Rybakov, F.R. Smirnov, A Relativistic Synchronization-Based Experiment for Improving the Accuracy of Time Scale Transmission, Technical Physics Letters, 47(1): 35–37, (2021), DOI:10.1134/s1063785021010065 [Google Scholar]
  40. R. Kornfeld, B. Arnold, M. Gross, N. Dahya, W. Klipstein, P. Gath, S. Bettadpur, GRACE-FO: The Gravity Recovery and Climate Experiment Follow-On Mission, Journal of Spacecraft and Rockets, 56(3):931-951, (2019), DOI:10.2514/1.A34326 [Google Scholar]
  41. N.F. Klyuev, V.F. Fateev, L.L. Ilyin, N.A. Byrkov, I.V. Sakhno, Principles of constructing two-position space-based SARs, Materials of the military-scientific conference on March 21-23, 1995, St. Petersburg: VIKKA, .V. 2, pp. 335-338, (1996) (In Russian) [Google Scholar]
  42. M.P. Clarizia, C.P. Gommenginger, S.T. Gleason, M.A. Srokosz, C. Galdi, M. Bisceglie, Analysis of GNSS-R delay-Doppler maps from the UK-DMC satellite over the ocean, Geophysical Research Letters 36(2), (2009), DOI:10.1029/2008GL036292 [Google Scholar]
  43. M. Antoniou, M. Cherniakov, GNSS-based bistatic SAR: a signal processing view, EURASIP J. Adv. Signal Process 2013(1), (2013), DOI:10.1186/1687-6180-2013-98 [Google Scholar]
  44. J. Wickert et, al., GEROS-ISS: GNSS REflectometry, Radio Occultation, and Scatterometry Onboard the International Space Station, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 9(10):4552-4581, (2013), DOI:10.1109/JSTARS.2016.2614428 [Google Scholar]
  45. W. Li, E. Cardellach, F. Fabra, S. Ribó, A. Rius, Lake Level and Surface Topography Measured with Spaceborne GNSS‐Reflectometry from CYGNSS Mission: Example for the Lake Qinghai. Geophysical Research Letters, 45(24), (2018), DOI:10.1029/2018GL080976 [Google Scholar]
  46. V.F. Fateev, A.V. Ksendzuk, P.S. Obukhov et al., Experimental bistatic radar complex, Electromagnetic waves and electronic systems, No. 5, V.17, pp. 58-61, (2012) (In Russian) [Google Scholar]
  47. A. Schleicher, N. Brandt, S. Vitale, D. Bortoluzzi, Control Tasks and Functional Architecture of the LISA Pathfinder Drag-Free System, Proc. of the 6th Intern. ESA Conference on Guidance, Navigation and Control Systems, Loutraki, Greece, October 17–20, 2005 (ESA SP-606, January 2006) [Google Scholar]
  48. L. Duchayne, F. Mercier, P. Wolf, Orbit determination for next generation space clocks, Astronomy and Astrophysics 504(2), (2007), DOI:10.1051/00046361/200809613 [Google Scholar]
  49. V.F. Fateev, V.P. Lopatin, Space bistatic radar for monitoring the ocean surface profile based on GNSS signals, Izvestiya vuzov. Instrument making, V. 62, No. 5. pp. 484-491, (2019) (In Russian) [Google Scholar]
  50. V.F. Fateev, R.A. Davlatov, Analysis of the capabilities of a space gradiometer on free masses, Almanac of modern metrology, No. 2 (22), pp. 65-72, (2020) (In Russian) [Google Scholar]
  51. O.V. Denisenko, I.S. Silvestrov, V.F. Fateev, R.A. Davlatov, Laser space gravity gradiometer, Positive decision on the application for a patent for invention No. 2021102273 dated 01.02.2021 (In Russian) [Google Scholar]
  52. M. Enrico, Time, Atomic Clock, and Relativistic Geodesy, Munchen, p. 127, (2013) [Google Scholar]
  53. P. Delva, N. Puchades, E. Schönemann et al., Gravitational Redshift Test Using Eccentric Galileo Satellites, Physical Review Letters 121(23), (2018), DOI:10.1103/PhysRevLett.121.231101 [Google Scholar]
  54. S. Herrmann, F. Finke, M. Lulf et .al., Test of the Gravitational Redshift with Galileo Satellites in an Eccentric Orbit // Physical Review Letters 121(23), (2018), DOI:10.1103/PhysRevLett.121.231102 [Google Scholar]
  55. L.D. Landau, E.M. Lifshits, Continuous media electrodynamics, 2nd ed., Rev. and add. Moscow.: Nauka, 621 p. (1982) (In Russian) [Google Scholar]
  56. V.F. Fateev, Refractive properties of the Earth’s gravitational sphere in rotating reference frames, Electromagnetic waves and electronic systems, 18, No. 5, pp. 073082, (2013) (In Russian) [Google Scholar]
  57. V.F. Fateev, Relativistic metrology of near-earth space–time and its practical applications, Astron. Rep., 62(12):1036-1041, (2018) [Google Scholar]
  58. A. Abramovici, W.E. Althouse, R.W.P. Drever et al., LIGO: The Laser Interferometer Gravitational-Wave Observatory, Science 256(5055):325-33б (1992), DOI:10.1126/science.256.5055.325 [Google Scholar]
  59. R. Flaminio et al., The gravitational wave detector VIRGO, [Google Scholar]
  60. B. Willke, P. Aufmuth, C. Aulbert et al., The GEO600 gravitational wave detector, Classical and Quantum Gravity 19(7):1377–1387, (2002), DOI:10.1088/02649381/19/7/321 [Google Scholar]
  61. Y. Aso et al., Interferometer design of the KAGRA gravitational wave detector, Physical review D: Particles and fields 88(4) (2013), DOI:10.1103/PhysRevD.88.043007 [Google Scholar]
  62. V.F. Fateev, R.A. Davlatov, Space-Based Gravitational-Wave Detectors: Development of Ground-Breaking Technologies for Future Space-Based Gravitational Gradiometers, Astronomy Reports, 63(8):699–709, (2019) DOI:10.1134/S1063772919080018 [Google Scholar]
  63. H. James et al., LISA: laser interferometer space antenna for gravitational wave measurements, Classical and Quantum Gravity, V.13, A247-A250, (1996). [Google Scholar]
  64. N. Seto, S. Kawamura, T. Nakamura, Possibility of direct measurement of the acceleration of the universe using laser interferometer gravitational wave antenna in space, Physical Review Letters 87(22), (2001) DOI:10.1103/PhysRevLett.87.221103 [Google Scholar]
  65. L. Jun et al., TianQin: a space-borne gravitational wave detector, Classical and Quantum Gravity 33(3), (2015) DOI:10.1088/0264-9381/33/3/035010 [Google Scholar]
  66. J.W. Conclin et al., LAGRANGE: LAser GRavitational-wave ANtenna at GEo-lunar Lagrange points, (2011) [Google Scholar]
  67. M. Tinto, J.C.N. de Araujo, O.D. Aguiar, M.E.S. Alves, Searching for gravitational waves with a geostationary interferometer, Astroparticle Physics, 48, (2013) DOI:10.1016/j.astropartphys.2013.07.001 [Google Scholar]
  68. V.I. Pustovoit, S.I. Donchenko, O.V. Denisenko, V.F. Fateev, The concept of creating a space laser gravitational antenna in the geocentric orbit GLONASS “SOIGA”, Almanac of modern metrology, 1(21), pp. 27-49, (2020) (In Russian) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.