Open Access
Issue
E3S Web Conf.
Volume 312, 2021
76th Italian National Congress ATI (ATI 2021)
Article Number 05004
Number of page(s) 11
Section Hydraulics and Pneumatics
DOI https://doi.org/10.1051/e3sconf/202131205004
Published online 22 October 2021
  1. M. Vukovic, R. Leifeld, H. Murrenhoff, Reducing Fuel Consumption in Hydraulic Excavators—A Comprehensive Analysis. 2017 Energies 10.5, p. 687. doi: 10.3390/en10050687. [Google Scholar]
  2. M. Inderelst, F.D. Weidner, C. Stammen, Quantification of Energy Saving Influencers. 21t Excavator Hydraulic System - A Holistic Investigation? 2018, 11th International Fluid Power Conference 19th - 21th March [Google Scholar]
  3. Joo, C., Stangl, M. Application of Power Regenerative Boom system to excavator. 2016 In Proceedings of the 10. IFK: International Fluid Power Conference, Dresden, Germany, 8-10 March; Volume 3, pp. 175–184; [Google Scholar]
  4. Li, J.; Zhao, J.; Zhang, X. A Novel Energy Recovery System Integrating Flywheel and Flow Regeneration for a Hydraulic Excavator Boom System. Energies 2020, 13, 315. DOI: 10.3390/en13020315. [Google Scholar]
  5. Guan, C. & Xu, X. & Lin, X. & Wang, S.-H. Recovering system of swing braking energy in hydraulic excavator. Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science) 2012. 46. 142–149. DOI: 10.3785/j.issn.1008-973X.2012.01.23. [Google Scholar]
  6. Rossetti A., and Macor A., Ulti-Objective Optimization of hydro-mechanical power split transmissions. Mechanism and Machine Theory 2013, 62(4), 112–128. DOI: 10.1016/j.mechmachtheory.2012.11.009. [Google Scholar]
  7. Rossetti A., Macor A., Benato A. “Impact of control strategies on the emissions in a city bus equipped with power-split transmission” Transportation Research Part D: Transport and Environment, Volume 50, 1 January 2017, Pages 357–371. DOI: 10.1016/j.trd.2016.11.025. Codice Scopus: 2-s2.0-85000426786. [Google Scholar]
  8. Rossetti A., Macor A., Scamperle M. “Optimization of components and layouts of hydromechanical transmissions” International Journal of Fluid Power 2017, Volume 18, Issue 2, 4 May, Pages 123–134. DOI: 10.1080/14399776.2017.1296746. [Google Scholar]
  9. Casoli P., Gambarotta A., Pompini N., Ricco L.; Coupling excavator hydraulic system and internal combustion engine models for the real-time simulation; Control Engineering Practice, 2015, pp. 26–37. http://dx.doi.org/10.1016/j.conengprac.2015.04.003. [Google Scholar]
  10. Casoli, P., Scolari, F., Minav, T., Rundo, M. Comparative energy analysis of a load sensing system and a zonal hydraulics for a 9-tonne excavator, Actuators 2020, 9(2):39. DOI: 10.3390/ACT9020039 [Google Scholar]
  11. Pintore F., Borghi M., Morselli R., Benevelli A., Zardin B., Belluzzi F. Modelling and Simulation of the Hydraulic Circuit of an Agricultural Tractor. ASME. Fluid Power Systems Technology 2014, 8th FPNI Ph.D Symposium on Fluid Power:V001T04A004. doi: 10.1115/FPNI2014-7848. [Google Scholar]
  12. Andrea Gaiola, Barbara Zardin, Paolo Casoli, Massimo Borghi, Francesca Mazzali, Francesco Pintore, Stefano Fiorati, The Hydraulic Power Generation and Transmission on Agricultural Tractors: feasible architectures to reduce dissipation and fuel consumption - Part I. E3S Web of Conferences 197, 07009, 2020 75th National ATI Congress - #7 Clean Energy for all (ATI 2020). DOI: 10.1051/e3sconf/202019707009 [Google Scholar]
  13. Paolo Casoli, Barbara Zardin, Salvatore Ardizio, Massimo Borghi, Francesco Pintore, Davide Mesturini, The Hydraulic Power Generation and Transmission on Agricultural Tractors: feasible architectures to reduce dissipation and fuel consumption - Part 2, E3S Web Conf. 197 07010 (2020), DOI: 10.1051/e3sconf/202019707010 [Google Scholar]
  14. Zardin, B.; Cillo, G.; Rinaldini, C.A.; Mattarelli, E.; Borghi, M. Pressure Losses in Hydraulic Manifolds. Energies 2017, 10, 310. [Google Scholar]
  15. Zardin, B.; Cillo, G.; Borghi, M.; D'Adamo, A.; Fontanesi, S. Pressure Losses in Multiple-Elbow Paths and in V-Bends of Hydraulic Manifolds. Energies 2017, 10, 788. [Google Scholar]
  16. Rundo M. Models for Flow Rate Simulation in Gear Pumps: A Review, Energies 2017 10(9), 1261, 2017; DOI: 10.3390/en10091261. [Google Scholar]
  17. E. Frosina, A. Senatore, M. Rigosi. Study of a High-Pressure External Gear Pump with a Computational Fluid Dynamic Modeling Approach. Energies 2017, 10(8), pp. 1113–1133 [Google Scholar]
  18. Corvaglia, A., Rundo, M., Casoli, P., Lettini, A., Evaluation of Tooth Space Pressure and Incomplete Filling in External Gear Pumps by Means of Three-Dimensional CFD Simulations. Energies 2021, 14, 342. https://doi.org/10.3390/en14020342 [Google Scholar]
  19. Zardin, B.; Natali, E.; Borghi, M. Evaluation of the Hydro—Mechanical Efficiency of External Gear Pumps. Energies 2019, 12, 2468. DOI: 10.3390/en12132468. [Google Scholar]
  20. Casoli, P., Scolari, F., Rundo M., Lettini, A., Rigosi, M. CFD Analyses of Textured Surfaces for Tribological Improvements in Hydraulic Pumps. Energies 2020, 13, 5799. https://doi.org/10.3390/en13215799 [Google Scholar]
  21. Zardin, B.; Natali, E.; Borghi, M. Evaluation of the Hydro—Mechanical Efficiency of External Gear Pumps. Energies 2019, 12, 2468. https://doi.org/10.3390/en12132468 [Google Scholar]
  22. Altare G., Rundo M. CFD Analysis of gerotor lubricating pumps at high speed: geometric features influencing the filling capability. Proceedings of the ASME/BATH 2015 Symposium on Fluid Power and Motion Control (FPMC), Oct. 12-14, 2015, Chicago, IL, USA. Paper no. FPMC2015-9539. DOI: 10.1115/FPMC2015-9539. [Google Scholar]
  23. Siano, D., Frosina, E., Senatore, A., “Diagnostic Process by Using Vibrational Sensors for Monitoring Cavitation Phenomena in a Gerotor Pump Used for Automotive Applications”, Energy Procedia, 2017, 126, Pages 1115–1122. [Google Scholar]
  24. D. Buono, di Schiano Cola, F.D., A. Senatore, E. Frosina, Buccilli, G., Harrison, J., 2016, “Modelling approach on a Gerotor pump working in cavitation conditions” 70th Conference of the Italian Thermal Machines Engineering Association, ATI 2016, Energy Procedia, DOI: 10.1016/j.egypro.2016.11.089. [Google Scholar]
  25. Altare G., Rundo M. “CFD Analysis of gerotor lubricating pumps at high speed: geometric features influencing the filling capability”, Proceedings of the ASME/BATH 2015 Symposium on Fluid Power and Motion Control (FPMC), Oct. 12-14, 2015, Chicago, IL, USA. Paper no. FPMC2015-9539. DOI: 10.1115/FPMC2015-9539. Scopus: 2-s2.0-84964403756. [Google Scholar]
  26. Rundo M. “Theoretical flow rate in crescent pumps”, Simulation Modelling Practice and Theory 71: 1–14, 2017. DOI: 10.1016/j.simpat.2016.11.001. [Google Scholar]
  27. Rundo M., Squarcini R., “Modelling and Simulation of Brake Booster Vacuum Pumps”, SAE International Journal of Commercial Vehicles 2013, 6(1): 236–248, ISSN:1946-391X, DOI: 10.4271/2013-01-9016 [Google Scholar]
  28. E. Frosina, A. Senatore, D. Buono, L. Santato, 2013, Analysis and simulation of an oil lubrication pump for the internal combustion engine, ASME International Mechanical Engineering Congress and Exposition, 2013, Proceedings IMECE Volume 7 B. [Google Scholar]
  29. A. Senatore, D. Buono, E. Frosina, A. De Vizio, P. Gaudino, A. Iorio, “A Simulated Analysis of the Lubrication Circuit of an In-Line Twin Automotive Engine” SAE 2014 World Congress and Exhibition; Detroit, MI, USA, ISSN 0148-7191 doi: 10.4271/2014-01-1081, Scopus Code= 2-s2.0-84899537842 [Google Scholar]
  30. Rundo M. “Piloted Displacement Controls for ICE Lubricating Vane Pumps”, SAE Int. Journal of Fuels and Lubricants, 2010, 2(2): 176–184, ISSN 1946-3952, DOI: 10.4271/2009-01-2758. [Google Scholar]
  31. Casoli, P., Pastori, M., Scolari, F., Rundo, M. “A vibration signal-based method for fault identification and classification in hydraulic axial piston pumps” Energies, 2019, 12 (5), art. no. 953, DOI: 10.3390/en12050953 [Google Scholar]
  32. Casoli, P., Campanini, F., Bedotti, A., Pastori, M., Lettini, A., Overall Efficiency Evaluation of a Hydraulic Pump with External Drainage Through Temperature Measurements, 2018, Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 140 (8), art. no. 081005, DOI: 10.1115/1.4039084 [Google Scholar]
  33. Finesso R., Rundo M. “Numerical and experimental investigation on a conical poppet relief valve with flow force compensation”, Int. Journal of Fluid Power 18(2): 111–122, 2017, ISSN: 1439-9776. DOI: 10.1080/14399776.2017.1296740. [Google Scholar]
  34. Barbara Zardin, Massimo Borghi, Giovanni Cillo, Carlo Alberto Rinaldini, Enrico Mattarelli, Design Of Two- Stage On/Off Cartridge Valves For Mobile Applications, Energy Procedia, Volume 126, 2017, Pages 1123–1130, ISSN 1876-6102, https://doi.org/10.1016/j.egypro.2017.08.275. [Google Scholar]
  35. E. Frosina, D. Buono, A. Senatore, I. J. Costin. A Simulation Methodology Applied on Hydraulic Valves for High Fluxes. International Review on Modelling and Simulations 2016, 9(3):217, doi: 10.15866/iremos.v9i3.9612. [Google Scholar]
  36. Finzel, M.; Helduser, S.; Jang, D.; Electro-Hydraulic Dual-Circuit System to Improve the Energy Efficiency of Mobile Machines. In Proceedings of the 7th International Fluid Power Conference (IFK), Aachen, Germany, 2010. [Google Scholar]
  37. Hansen, A.; Pedersen, H.; T. Andersen, and L.L. Wachmann, Investigation of energy saving separate meterin separate meter-out control strategies, In the 12th Scandinavian International Conference on Fluid Power, SICFP'11, Tampere, Finland, 2011. [Google Scholar]
  38. Hippalgaonkar, R.; Ivantysynova, M.; A Series-Parallel hydraulic hybrid mini-excavator with displacement controlled actuators. The 13th Scandinavian International Conference on Fluid Power, SICFP2013, June 3-5, 2013, Linköping, Sweden. [Google Scholar]
  39. Lin, T.; Wang, Q.; Hu, B.; Gong, W. Research on the energy regeneration systems for hybrid hydraulic excavators. Autom. Constr. 2010, 19, 1016–1026. [Google Scholar]
  40. Gong, J.; He, Q.; Zhang, D.; Zhang, Y.; Liu, X.; Zhao, Y.; Liu, C. Power system control strategy for hybrid excavator based on equivalent fuel consumption. In Proceedings of the 2012 IEEE International Conference on Mechatronics and Automation, Chengdu, China, 5-8 August 2012. [Google Scholar]
  41. Li, W.; Wu, B.; Cao, B. Control strategy of a novel energy recovery system for parallel hybrid hydraulic excavator. Adv. Mech. Eng. 2015, 7, 1–9. [Google Scholar]
  42. Schneider, K. Liebherr pactronic-hybrid power booster. In Proceedings of the 8th International Fluid Power Conference (IFK), Dresden, Germany, 2012. [Google Scholar]
  43. Casoli, P.; Gambarotta, A.; Pompini, N.; Ricco, L. Hybridization methodology based on DP algorithm for hydraulic mobile machinery—Application to a middle size excavator. Autom. Constr. 2016, 61, 42–57. [Google Scholar]
  44. Padovani, D., Rundo, M., Altare, G. The Working Hydraulics of Valve-Controlled Mobile Machines: Classification and Review. J. Dyn. Sys., Meas. Control 2020, 142(7), 070801. DOI: 10.1115/1.4046334. [Google Scholar]
  45. J. Rosero, J. Ortega, E. Aldabas and L. Romeral. Moving Towards a more Electric Aircraft. IEEE A&E System Magazine, 2007 pp. 3–9, March. DOI: 10.1109/MAES.2007.340500 [Google Scholar]
  46. M. Schneider, O. Koch, and J. Weber. Green Wheel Loader - improving fuel economy through energy efficient drive and control concepts. 10th Int. Fluid Power Conf., Dresden, 2016. [Google Scholar]
  47. S. Smith, J. Irving and J. Irving. Electro Hydrostatic Actuators for Control of Undersea Vehicles. Joint Undersea Warfare Technology Fall Conference, 2006 Groton, Connecticut. [Google Scholar]
  48. Schmidt, L., Ketelsen, S., Brask, M.H., Mortensen, K.A. A Class of Energy Efficient Self-Contained Electro-Hydraulic Drives with Self-Locking Capability. Energies 2019, 12, 1866, doi: 10.3390/en12101866. [Google Scholar]
  49. Ketelsen S., Padovani D., Andersen T.O., Ebbesen M.K., Schmidt L. Classification and Review of Pump-Controlled Differential Cylinder Drives. Energies 2019, 12. 1293. DOI: 10.3390/en12071293 [Google Scholar]
  50. P. Casoli, A. Gambarotta, N. Pompini, L. Ricco. Development and application of co-simulation and control- oriented modeling in the improvement of performance and energy saving of mobile machinery. Energy Procedia, 2014, Volume 45, Pages 849–858. Elsevier. doi: 10.1016/j.egypro.2014.01.090. [Google Scholar]
  51. P. Casoli, A. Anthony, L. Ricco. Modeling of an Excavator System - Load sensing flow sharing valve model. SAE 2012 Commercial Vehicle Engineering Congress, Rosemont, Illinois, USA, 13-14 September 2012. doi: 10.4271/2012-01-2042. [Google Scholar]
  52. Bedotti, A., Campanini, F., Pastori, M., Ricco, L., Casoli, P. Energy saving solutions for a hydraulic excavator. Energy Procedia 2017, 126, pp. 1099–1106 DOI: 10.1016/j.egypro.2017.08.255 [Google Scholar]
  53. Paolo Casoli, Luca Ricco, Federico Campanini, Andrea Bedotti. Hydraulic Hybrid Excavator—Mathematical Model Validation and Energy Analysis, Energies, 2016, 9, 1002; doi: 10.3390/en9121002 [Google Scholar]
  54. P. Casoli, A. Anthony, M. Rigosi. Modeling of an Excavator System - Semi empirical hydraulic pump model” SAE - International Journal of Commercial Vehicles, 2011 vol. 4, Issue 1, pp. 242–255. ISSN: 1946-391X. doi: 10.4271/2011-01-2278. [Google Scholar]
  55. P. Casoli, N. Pompini, L. Ricco. Simulation of an Excavator Hydraulic System Using Nonlinear Mathematical Models. Strojniski Vestnik - Journal of Mechanical Engineering 2015, 61, 10, 583–593. DOI: 10.5545/sv-jme.2015.2570 [Google Scholar]
  56. P. Casoli, L. Ricco, F. Campanini, A. Lettini, C. Dolcin. Mathematical model of an hydraulic excavator for fuel consumption predictions” Proceedings of the ASME/BATH Symposium on Fluid Power & Motion Control FPMC2015 October 12-14, 2015, Chicago, Illinois, United States ISBN: 978-0-7918-5723-6. Paper No. FPMC2015-9566, pp. V001T01A035; 10 pages. doi: 10.1115/FPMC2015-9566 [Google Scholar]
  57. Earth-Moving Machinery—Fuel Consumption on Hydraulic Excavator—Test Procedure; JCMAS H020:2007; Japan Construction Machinery and Construction Association for Hydraulic Excavators: Tokyo, Japan, 2007. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.