Open Access
E3S Web Conf.
Volume 312, 2021
76th Italian National Congress ATI (ATI 2021)
Article Number 07002
Number of page(s) 11
Section Propulsion Systems for Sustainable Mobility
Published online 22 October 2021
  1. Benajes, J., et al., Evaluation of the passive pre-chamber ignition concept for future high compression ratio turbocharged spark-ignition engines. Applied Energy, 2019. 248: p. 576–588. [CrossRef] [Google Scholar]
  2. Paltrinieri, S., et al., Water Injection Contribution to Enabling Stoichiometric Air-to-Fuel Ratio Operation at Rated Power Conditions of a High-Performance DISI Single Cylinder Engine. 2019, SAE International. [Google Scholar]
  3. Lee, J., et al., Bowl Shape Design Optimization for Engine-Out PM Reduction in Heavy Duty Diesel Engine. 2015, SAE International. [Google Scholar]
  4. Mangeruga, V., et al., Design of a Hybrid Power Unit for Formula SAE Application: Packaging Optimization and Thermomechanical Design of the Electric Motor Case. SAE Int. J. Adv. & Curr. Prac. in Mobility, 2019. 2(2): p. 721–736. [Google Scholar]
  5. Seibel, J., S. Pischinger, and P. von Dincklage, Optimized Layout of Gasoline Engines for Hybrid Powertrains. 2008, The Automotive Research Association of India. [Google Scholar]
  6. Koci, C., et al., A Hybrid Heavy-Duty Diesel Power System for Off-Road Applications - Concept Definition. SAE Technical Paper Series, 2021: p. Medium: ED. [Google Scholar]
  7. Cracknell, R., et al., Assessing the Efficiency of a New Gasoline Compression Ignition (GCI) Concept. 2020, SAE International. [Google Scholar]
  8. Zheng, Z. and M. Yao, Charge stratification to control HCCI: Experiments and CFD modeling with n-heptane as fuel. Fuel, 2009. 88(2): p. 354–365. [CrossRef] [Google Scholar]
  9. D'Adamo, A., et al., Chemistry-Based Laminar Flame Speed Correlations for a Wide Range of Engine Conditions for Iso-Octane, n-Heptane, Toluene and Gasoline Surrogate Fuels. SAE Technical Papers, 2017. 2017-October. [Google Scholar]
  10. An, Y.-Z., et al., Development of a soot particle model with PAHs as precursors through simulations and experiments. Fuel, 2016. 179: p. 246–257. [CrossRef] [Google Scholar]
  11. Del Pecchia, M., et al., A threshold soot index-based fuel surrogate formulation methodology to mimic sooting tendency of real fuels in 3D-CFD simulations. Applied Energy, 2020. 280: p. 115909. [CrossRef] [Google Scholar]
  12. Del Pecchia, M., et al., Gasoline-ethanol blend formulation to mimic laminar flame speed and auto-ignition quality in automotive engines. Fuel, 2020. 264. [Google Scholar]
  13. Bozza, F., et al., Refinement of a 0D Turbulence Model to Predict Tumble and Turbulent Intensity in SI Engines. Part I: 3D Analyses. SAE Technical Papers, 2018. 2018-April. [Google Scholar]
  14. Bozza, F., et al., Refinement of a 0D Turbulence Model to Predict Tumble and Turbulent Intensity in SI Engines. Part II: Model Concept, Validation and Discussion. 2018, SAE International. [Google Scholar]
  15. De Bellis, V., et al., Development of a phenomenological turbulence model through a hierarchical 1D/3D approach applied to a VVA turbocharged engine. SAE International Journal of Engines, 2016. 9(1): p. 506–519. [CrossRef] [Google Scholar]
  16. Millo, F., C.V. Ferraro, and L. Pilo, A Contribution to Engine and Vehicle Performance Prediction. 2000, SAE International. [Google Scholar]
  17. D’Adamo, A., et al., Development of a RANS-Based Knock Model to Infer the Knock Probability in a Research Spark-Ignition Engine. SAE International Journal of Engines, 2017. 10(3). [Google Scholar]
  18. D'Adamo, A., et al., The potential of statistical RANS to predict knock tendency: Comparison with LES and experiments on a spark-ignition engine. Applied Energy, 2019. 249: p. 126–142. [CrossRef] [Google Scholar]
  19. Berni, F., et al., Towards grid-independent 3D-CFD wall-function-based heat transfer models for complex industrial flows with focus on in-cylinder simulations. Applied Thermal Engineering, 2021. 190: p. 116838. [CrossRef] [Google Scholar]
  20. Berni, F., et al., On the existence of universal wall functions in in-cylinder simulations using a low-Reynolds RANS turbulence model. AIP Conference Proceedings, 2019. 2191(1): p. 020019. [CrossRef] [Google Scholar]
  21. Berni, F. and S. Fontanesi, A 3D-CFD methodology to investigate boundary layers and assess the applicability of wall functions in actual industrial problems: A focus on in-cylinder simulations. Applied Thermal Engineering, 2020. 174. [Google Scholar]
  22. Rosetti, A., et al., CFD analysis and knock prediction into crevices of piston to liner fireland of an high performance ICE. SAE Technical Papers, 2019. 2019. [Google Scholar]
  23. D'Adamo, A., et al., Understanding the origin of cycle-to-cycle variation using large-eddy simulation: Similarities and differences between a homogeneous low-revving speed research engine and a production DI turbocharged engine. SAE International Journal of Engines, 2018. 12(1): p. 1–22. [Google Scholar]
  24. Iacovano, C., et al., A Preliminary 1D-3D Analysis of the Darmstadt Research Engine Under Motored Condition. E3S Web Conf., 2020. 197: p. 06006. [CrossRef] [EDP Sciences] [Google Scholar]
  25. Insuk, K., et al. Society of Automotive Engineers technical paper series. 2017, Warrendale, Penn.: Society of Automotive Engineers. [Google Scholar]
  26. Krastev, V.K., et al., Validation of a zonal hybrid URANS/LES turbulence modeling method for multi-cycle engine flow simulation. International Journal of Engine Research, 2019. [Google Scholar]
  27. Rulli, F., et al., A critical review of flow field analysis methods involving proper orthogonal decomposition and quadruple proper orthogonal decomposition for internal combustion engines. International Journal of Engine Research, 2021. 22(1): p. 222–242. [CrossRef] [Google Scholar]
  28. Teodosio, L., et al., Impact of intake valve strategies on fuel consumption and knock tendency of a spark ignition engine. Applied Energy, 2018. 216: p. 91–104. [CrossRef] [Google Scholar]
  29. Chiodi, M., et al., Development of an Innovative Combustion Process: Spark-Assisted Compression Ignition. SAE Int. J. Engines, 2017. 10(5): p. 2486–2499. [CrossRef] [Google Scholar]
  30. Hua, J., et al., Influence of pre-chamber structure and injection parameters on engine performance and combustion characteristics in a turbulent jet ignition (TJI) engine. Fuel, 2021.283: p. 119236. [CrossRef] [Google Scholar]
  31. Berni, F., et al., Numerical Investigation on the Effects of Water/Methanol Injection as Knock Suppressor to Increase the Fuel Efficiency of a Highly Downsized GDI Engine. SAE Technical Papers, 2015. 2015-September(September). [Google Scholar]
  32. Berni, F., et al. A numerical investigation on the potentials of water injection to increase knock resistance and reduce fuel consumption in highly downsized GDI engines. in Energy Procedia. 2015. [Google Scholar]
  33. Breda, S., et al. Effects on knock intensity and specific fuel consumption of port water/methanol injection in a turbocharged GDI engine: Comparative analysis. in Energy Procedia. 2015. [Google Scholar]
  34. Teodosio, L., F. Bozza, and F. Berni, Effects of nanofluid contaminated coolant on the performance of a spark ignition engine. AIP Conference Proceedings, 2019. 2191(1): p. 020147. [CrossRef] [Google Scholar]
  35. Assanis, D.N., et al., The Effects of Ceramic Coatings on Diesel Engine Performance and Exhaust Emissions. 1991, SAE International. [Google Scholar]
  36. Rajamani, V.K., S. Schoenfeld, and A. Dhongde, Parametric Analysis of Piston Bowl Geometry and Injection Nozzle Configuration using 3D CFD and DoE. 2012, SAE International. [Google Scholar]
  37. Breda, S., et al., Experimental and numerical study on the adoption of split injection strategies to improve air-butanol mixture formation in a DISI optical engine. Fuel, 2019: p. 104–124. [CrossRef] [Google Scholar]
  38. Severi, E., et al. Numerical investigation on the effects of bore reduction in a high performance turbocharged GDI engine. 3D investigation of knock tendency. in Energy Procedia. 2015. [Google Scholar]
  39. Saha, K., Agarwal, A., Ghosh, K., Som, S., Two-Phase Flow for Automotive and Power Generation Sectors. 2019. [Google Scholar]
  40. Reitz, R.D. and R. Diwakar, Effect of Drop Breakup on Fuel Sprays. 1986, SAE International. [Google Scholar]
  41. Reitz, R.D. and R. Diwakar, Structure of High-Pressure Fuel Sprays. 1987, SAE International. [Google Scholar]
  42. Pilch, M. and C.A. Erdman, Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop. International Journal of Multiphase Flow, 1987. 13(6): p. 741–757. [CrossRef] [Google Scholar]
  43. C., B., Mixture Formation in Internal Combustion Engines. 2006: Springer. [Google Scholar]
  44. Wierzba, A., Deformation and breakup of liquid drops in a gas stream at nearly critical Weber numbers. Experiments in Fluids, 1990. 9(1): p. 59–64. [CrossRef] [Google Scholar]
  45. SIEMENS, STAR-CD METHODOLOGY Version 2019.1. 2019. [Google Scholar]
  46. Sparacino, S., et al., Impact of the primary break-up strategy on the morphology of GDI sprays in 3D-CFD simulations of multi-hole injectors. Energies, 2019. 12(15). [Google Scholar]
  47. Linstrom, P. and W. Mallard, - The NIST Chemistry WebBook: A Chemical Data Resource on the Internet. [Google Scholar]
  48. Postrioti, L., et al., Experimental and Numerical Analysis of Spray Evolution, Hydraulics and Atomization for a 60 MPa Injection Pressure GDI System. SAE Technical Papers, 2018. 2018-April. [Google Scholar]
  49. Sparacino, S., et al. Impact of different droplets size distribution on the morphology of GDI sprays: Application to multi-hole injectors. in AIP Conference Proceedings. 2019. [Google Scholar]
  50. Sparacino, S., et al., 3D-CFD Simulation of a GDI Injector Under Standard and Flashing Conditions. E3S Web Conf., 2020. 197: p. 06002. [CrossRef] [EDP Sciences] [Google Scholar]
  51. Sim, J., et al., Spray Modeling for Outwardly-Opening Hollow-Cone Injector. 2016. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.