Open Access
E3S Web Conf.
Volume 312, 2021
76th Italian National Congress ATI (ATI 2021)
Article Number 07007
Number of page(s) 11
Section Propulsion Systems for Sustainable Mobility
Published online 22 October 2021
  1. A. D’Adamo, M. Riccardi, M. Borghi, and S. Fontanesi, “CFD Modelling of a Hydrogen/Air PEM Fuel Cell with a Serpentine Gas Distributor,” Processes, vol. 9, no. 3, 2021, DOI: 10.3390/pr9030564. [Google Scholar]
  2. A. D’Adamo, M. Riccardi, C. Locci, M. Romagnoli, and S. Fontanesi, “Numerical Simulation of a High Current Density PEM Fuel Cell,” SAE International, Warrendale, PA, SAE Technical Paper 2020-24-0016, Sep. 2020. DOI: 10.4271/2020-24-0016. [Google Scholar]
  3. V. Mangeruga, M. Giacopini, S. G. Barbieri, F. Berni, E. Mattarelli, and C. Rinaldini, “Design of a Hybrid Power Unit for Formula SAE Application: Packaging Optimization and Thermomechanical Design of the Electric Motor Case,” SAE Int. J. Adv. Curr. Pract. Mobil., vol. 2, no. 2, Art. no. 2019-24-0197, Sep. 2019, DOI: 10.4271/2019-24-0197. [Google Scholar]
  4. M. L. Botero, S. Mosbach, and M. Kraft, “Sooting tendency of paraffin components of diesel and gasoline in diffusion flames,” Fuel, vol. 126, pp. 8–15, Jun. 2014, DOI: 10.1016/j.fuel.2014.02.005. [Google Scholar]
  5. F. Rulli, S. Fontanesi, A. D’Adamo, and F. Berni, “A critical review of flow field analysis methods involving proper orthogonal decomposition and quadruple proper orthogonal decomposition for internal combustion engines,” Int. J. Engine Res., vol. 22, no. 1, pp. 222–242, Jan. 2021, DOI: 10.1177/1468087419836178. [Google Scholar]
  6. A. Cavicchi, L. Postrioti, F. Berni, S. Fontanesi, and R. Di Gioia, “Evaluation of hole-specific injection rate based on momentum flux measurement in GDI systems,” Fuel, vol. 263, p. 116657, Mar. 2020, DOI: 10.1016/j.fuel.2019.116657. [Google Scholar]
  7. A. Cavicchi, S. Sparacino, F. Berni, L. Postrioti, and S. Fontanesi, “Evaluation of the single jet flow rate for a multi-hole GDI nozzle”, AIP Conference Proceedings, vol. 2191, p. 020043, Dec. 2019, DOI: 10.1063/1.5138776. [Google Scholar]
  8. S. Fontanesi, M. Del Pecchia, V. Pessina, S. Sparacino, and S. Di Iorio, “Quantitative investigation on the impact of injection timing on soot formation in a GDI engine with a customized sectional method,” Int. J. Engine Res., p. 146808742199395, Feb. 2021, DOI: 10.1177/1468087421993955. [Google Scholar]
  9. M. Del Pecchia and S. Fontanesi, “A methodology to formulate multicomponent fuel surrogates to model flame propagation and ignition delay,” Fuel, vol. 279, p. 118337, Nov. 2020, DOI: 10.1016/j.fuel.2020.118337. [Google Scholar]
  10. S. Breda et al., “Numerical Simulation of Gasoline and n-Butanol Combustion in an Optically Accessible Research Engine,” SAEInt. J. FuelsLubr., vol. 10, no. 1, Art. no. 2017-01-0546, Mar. 2017, DOI: 10.4271/2017-01-0546. [Google Scholar]
  11. A. Rosetti, C. Iotti, A. Bedogni, G. Cantore, S. Fontanesi, and F. Berni, “CFD Analysis and Knock Prediction into Crevices of Piston to Liner Fireland of an High Performance ICE,” SAE International, Warrendale, PA, SAE Technical Paper 2019-24-0006, Sep. 2019. DOI: 10.4271/2019-24-0006. [Google Scholar]
  12. E. Severi, A. D’Adamo, F. Berni, S. Breda, M. Lugli, and E. Mattarelli, “Numerical Investigation on the Effects of Bore Reduction in a High Performance Turbocharged GDI Engine. 3D Investigation of Knock Tendency,” Energy Procedia, vol. 81, pp. 846–855, Dec. 2015, DOI: 10.1016/j.egypro.2015.12.094. [Google Scholar]
  13. M. D. Pecchia et al., “Development of a Sectional Soot Model Based Methodology for the Prediction of Soot Engine-Out Emissions in GDI Units,” SAE International, Warrendale, PA, SAE Technical Paper 2020-01-0239, Apr. 2020. DOI: 10.4271/2020-01-0239. [Google Scholar]
  14. M. Mehl, J. Y. Chen, W. J. Pitz, S. M. Sarathy, and C. K. Westbrook, “An Approach for Formulating Surrogates for Gasoline with Application toward a Reduced Surrogate Mechanism for CFD Engine Modeling,” Energy Fuels, vol. 25, no. 11, pp. 5215–5223, Nov. 2011, DOI: 10.1021/ef201099y. [Google Scholar]
  15. C. Marchal, G. Moréac, C. Vovelle, C. Mounaïm-Rousselle, and F. Mauss, “Soot modelling in automotive engines,” p. 7. [Google Scholar]
  16. S. M. Sarathy, A. Farooq, and G. T. Kalghatgi, “Recent progress in gasoline surrogate fuels,” Prog. Energy Combust. Sci., vol. 65, pp. 67–108, Mar. 2018, DOI: 10.1016/j.pecs.2017.09.004. [Google Scholar]
  17. D. Kim, J. Martz, A. Abdul-Nour, X. Yu, M. Jansons, and A. Violi, “A six-component surrogate for emulating the physical and chemical characteristics of conventional and alternative jet fuels and their blends,” Combust. Flame, vol. 179, pp. 86–94, May 2017, DOI: 10.1016/j.combustflame.2017.01.025. [Google Scholar]
  18. D. Kim, J. Martz, and A. Violi, “A surrogate for emulating the physical and chemical properties of conventional jet fuel,” Combust. Flame, vol. 161, no. 6, pp. 1489–1498, Jun. 2014, DOI: 10.1016/j.combustflame.2013.12.015. [Google Scholar]
  19. S. Liang, Z. Li, J. Gao, X. Ma, H. Xu, and S. Shuai, “PAHs and soot formation in laminar partially premixed co-flow flames fuelled by PRFs at elevated pressures,” Combust. Flame, vol. 206, pp. 363–378, Aug. 2019, DOI: 10.1016/j.combustflame.2019.05.007. [Google Scholar]
  20. J. Y. Tan, F. Bonatesta, H. K. Ng, and S. Gan, “Developments in computational fluid dynamics modelling of gasoline direct injection engine combustion and soot emission with chemical kinetic modelling,” Appl. Therm. Eng., vol. 107, pp. 936–959, Aug. 2016, DOI: 10.1016/j.applthermaleng.2016.07.024. [Google Scholar]
  21. S. Li et al., “Development of a phenomenological soot model integrated with a reduced TRF-PAH mechanism for diesel engine application,” Fuel, vol. 283, p. 118810, Jan. 2021, DOI: 10.1016/j.fuel.2020.118810. [Google Scholar]
  22. Y. An, M. Jaasim, R. Vallinayagam, S. Vedharaj, H. G. Im, and Bengt, Johansson, “Numerical simulation of combustion and soot under partially premixed combustion of low-octane gasoline,” Fuel, vol. 211, pp. 420–431, Jan. 2018, DOI: 10.1016/j.fuel.2017.09.064. [Google Scholar]
  23. M. Del Pecchia, S. Fontanesi, J. Prager, C. Kralj, and H. Lehtiniemi, “A threshold soot index-based fuel surrogate formulation methodology to mimic sooting tendency of real fuels in 3D-CFD simulations,” Appl. Energy, vol. 280, p. 115909, Dec. 2020, DOI: 10.1016/j.apenergy.2020.115909. [Google Scholar]
  24. M. Del Pecchia, V. Pessina, F. Berni, A. D’Adamo, and S. Fontanesi, “Gasoline-ethanol blend formulation to mimic laminar flame speed and auto-ignition quality in automotive engines,” Fuel, vol. 264, p. 116741, Mar. 2020, DOI: 10.1016/j.fuel.2019.116741. [Google Scholar]
  25. R. J. Gill, D. B. Olson, and H. F. Calcote, “Correlations of Soot Formation in Turbojet Engines and in Laboratory Flames,” in Volume 3: Coal, Biomass and Alternative Fuels; Combustion and Fuels; Oil and Gas Applications; Cycle Innovations, Amsterdam, The Netherlands, Jun. 1984, p. V003T06A018. DOI: 10.1115/84-GT-108. [Google Scholar]
  26. M. J. Montgomery, D. D. Das, C. S. McEnally, and L. D. Pfefferle, “Analyzing the robustness of the yield sooting index as a measure of sooting tendency,” Proc. Combust. Inst., vol. 37, no. 1, pp. 911–918, 2019, DOI: 10.1016/j.proci.2018.06.105. [Google Scholar]
  27. E. J. Barrientos, “Group additivity in soot formation for the example of C-5 oxygenated hydrocarbon fuels,” Combust. Flame, p. 15, 2013. [Google Scholar]
  28. F. Rulli, A. Barbato, S. Fontanesi, and A. D’Adamo, “Large eddy simulation analysis of the turbulent flow in an optically accessible internal combustion engine using the overset mesh technique,” Int. J. Engine Res., vol. 22, no. 5, pp. 1440–1456, May 2021, DOI: 10.1177/1468087419896469. [Google Scholar]
  29. V. K. Krastev, A. D’Adamo, F. Berni, and S. Fontanesi, “Validation of a zonal hybrid URANS/LES turbulence modeling method for multi-cycle engine flow simulation,” Int. J. Engine Res., vol. 21, no. 4, pp. 632–648, Jun. 2019, DOI: 10.1177/1468087419851905. [Google Scholar]
  30. A. D’Adamo, C. Iacovano, and S. Fontanesi, “Large-Eddy simulation of lean and ultra-lean combustion using advanced ignition modelling in a transparent combustion chamber engine,” Appl. Energy, vol. 280, p. 115949, Dec. 2020, DOI: 10.1016/j.apenergy.2020.115949. [Google Scholar]
  31. F. Berni, S. Breda, M. Lugli, and G. Cantore, “A Numerical Investigation on the Potentials of Water Injection to Increase Knock Resistance and Reduce Fuel Consumption in Highly Downsized GDI Engines,” Energy Procedia, vol. 81, pp. 826–835, Dec. 2015, DOI: 10.1016/j.egypro.2015.12.091. [Google Scholar]
  32. S. Fontanesi, G. Cicalese, A. D’Adamo, and G. Cantore, “A Methodology to Improve Knock Tendency Prediction in High Performance Engines,” Energy Procedia, vol. 45, pp. 769–778, 2014, DOI: 10.1016/j.egypro.2014.01.082. [Google Scholar]
  33. “Impact of different droplets size distribution on the morphology of GDI sprays: Application to multi-hole injectors: AIP Conference Proceedings: Vol 2191, No 1.” (accessed May 27, 2021). [Google Scholar]
  34. Sparacino, Berni, D’Adamo, Krastev, Cavicchi, and Postrioti, “Impact of the Primary Break-Up Strategy on the Morphology of GDI Sprays in 3D-CFD Simulations of Multi-Hole Injectors,” Energies, vol. 12, no. 15, p. 2890, Jul. 2019, DOI: 10.3390/en12152890. [Google Scholar]
  35. S. Sparacino, F. Berni, M. Riccardi, A. Cavicchi, and L. Postrioti, “3D-CFD Simulation of a GDI Injector Under Standard and Flashing Conditions,” E3S Web Conf., vol. 197, p. 06002, 2020, DOI: 10.1051/e3sconf/202019706002. [Google Scholar]
  36. R. D. Reitz and R. Diwakar, “Effect of Drop Breakup on Fuel Sprays,” Feb. 1986. doi: [Google Scholar]
  37. J. Senda, T. Kanda, M. Al-Roub, P. V. Farrell, T. Fukami, and H. Fujimoto, “Modeling Spray Impingement Considering Fuel Film Formation on the Wall,” SAE Trans., vol. 106, pp. 98–112, 1997. [Google Scholar]
  38. F. Berni and S. Fontanesi, “A 3D-CFD methodology to investigate boundary layers and assess the applicability of wall functions in actual industrial problems: A focus on in-cylinder simulations,” Appl. Therm. Eng., vol. 174, p. 115320, Jun. 2020, DOI: 10.1016/j.applthermaleng.2020.115320. [Google Scholar]
  39. S. Fontanesi, G. Cicalese, G. Cantore, and A. D’Adamo, “Integrated In-Cylinder/CHT Analysis for the Prediction of Abnormal Combustion Occurrence in Gasoline Engines,” SAE Technical Paper, 2014-01-1151, 2014, 10.4271/2014-01-1151. [Google Scholar]
  40. F. Berni, G. Cicalese, S. Sparacino, and G. Cantore, “On the existence of universal wall functions in in-cylinder simulations using a low-Reynolds RANS turbulence model,” AIP Conf. Proc., vol. 2191, no. 1, p. 020019, Dec. 2019, DOI: 10.1063/1.5138752. [Google Scholar]
  41. F. Berni, G. Cicalese, M. Borghi, and S. Fontanesi, “Towards grid-independent 3D-CFD wall-function-based heat transfer models for complex industrial flows with focus on in-cylinder simulations,” Appl. Therm. Eng., vol. 190, p. 116838, May 2021, DOI: 10.1016/j.applthermaleng.2021.116838. [Google Scholar]
  42. R. C. Reid, J. M. Prausnitz, and B. E. Poling, The properties of gases and liquids. United States: McGraw Hill Book Co., New York, NY, 1987. [Online]. [Google Scholar]
  43. S. Malaguti, S. Fontanesi, and E. Severi, “Numerical Analysis of GDI Engine Cold-Start at Low Ambient Temperatures,” SAE International, Warrendale, PA, SAE Technical Paper 2010-01-2123, Oct. 2010. DOI: 10.4271/2010-01-2123. [Google Scholar]
  44. S. Malaguti, G. Cantore, S. Fontanesi, R. Lupi, and A. Rosetti, “CFD Investigation of Wall Wetting in a GDI Engine under Low Temperature Cranking Operations,” SAE International, Warrendale, PA, SAE Technical Paper 2009-01-0704, Apr. 2009. DOI: 10.4271/2009-01-0704. [Google Scholar]
  45. M. R. Riazi, Characterization and properties of petroleum fractions. W. Conshohocken, PA: ASTM International, 2005. [Google Scholar]
  46. Peter Linstrom and William Mallard, “The NIST Chemistry WebBook: A Chemical Data Resource on the Internet,” no. 46, 2001. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.