Open Access
Issue
E3S Web Conf.
Volume 312, 2021
76th Italian National Congress ATI (ATI 2021)
Article Number 07010
Number of page(s) 16
Section Propulsion Systems for Sustainable Mobility
DOI https://doi.org/10.1051/e3sconf/202131207010
Published online 22 October 2021
  1. Chatzimarkakis, J., Levoyannis, C., van Wijk, A. & Wouters, F. Hydrogen Act Towards the creation of the European Hydrogen Economy. (2021). [Google Scholar]
  2. Li, Y., Kool, C. & Engelen, P. J. Analyzing the business case for hydrogen-fuel infrastructure investments with endogenous demand in the Netherlands: A real options approach. Sustainability 12, (2020). [Google Scholar]
  3. Hydrogen Council. Hydrogen scaling up. A sustainable pathway for the global energy transition. www.hydrogencouncil.com. (2017). [Google Scholar]
  4. FCH J.U. Hydrogen roadmap Europe. A sustainable pathway for the European energy transition. (2019) DOI: 10.2843/249013. [Google Scholar]
  5. Hydrogen Mobility Europe. Emerging Conclusions. (2020). [Google Scholar]
  6. Hecht, E. S. & Pratt, J. Comparison of conventional vs. modular hydrogen refueling stations, and on-site production vs. delivery. www.sandia.gov. [Google Scholar]
  7. Jovan, D. J. & Dolanc, G. Can Green Hydrogen Production Be Economically Viable under Current Market Conditions. Energies 13, 6599 (2020). [Google Scholar]
  8. China Deloitte. Fueling the Future of Mobility Hydrogen and fuel cell solutions for transportation. Financ. Advis 1 (2020). [Google Scholar]
  9. Hecht, E. S. & Pratt, J. Comparison of conventional vs. modular hydrogen refueling stations, and on-site production vs. delivery. www.sandia.gov (2017). [Google Scholar]
  10. IRENA. Green Hydrogen Cost Reduction; Scaling up Electrolysers to meet the 1.5 C Climate Goal. www.irena.org/publications (2020). [Google Scholar]
  11. Melaina, M. & Penev, M. Hydrogen Station Cost Estimates. (2013). [Google Scholar]
  12. Bush, B. & Melaina, M. National FCEV and Hydrogen Fueling Station Scenarios. in (2016). [Google Scholar]
  13. Murthy Konda, N. V. S. N., Shah, N. & Brandon, N. P. Optimal transition towards a large-scale hydrogen infrastructure for the transport sector: The case for the Netherlands. International Journal of Hydrogen Energy 36, 4619–4635 (2011). [Google Scholar]
  14. Viktorsson, L., Heinonen, J. T., Skulason, J. B. & Unnthorsson, R. A step towards the hydrogen economy - A life cycle cost analysis of a hydrogen refueling station. Energies 10, (2017). [Google Scholar]
  15. Weinert, J. X. & Lipman, T. An assessment of the near-term costs of hydrogen refueling stations and station components. Inst Transp Stud (2006). [Google Scholar]
  16. Fragiacomo, P. & Genovese, M. Technical-economic analysis of a hydrogen production facility for power-to-gas and hydrogen mobility under different renewable sources in Southern Italy. Energy Conversion and Management 223, (2020). [Google Scholar]
  17. Minutillo, M., Perna, A., Forcina, A., di Micco, S. & Jannelli, E. Analyzing the levelized cost of hydrogen in refueling stations with on-site hydrogen production via water electrolysis in the Italian scenario. International Journal of Hydrogen Energy 46, 13667–13677 (2021). [Google Scholar]
  18. Monforti Ferrario, A., Rajabi Hamedani, S., del Zotto, L., Santori Simone, G. & Bocci, E. Techno-economic analysis of in-situ production by electrolysis, biomass gasification and delivery systems for Hydrogen Refuelling Stations: Rome case study. in Energy Procedia vol. 148 82–89 (Elsevier Ltd, 2018). [Google Scholar]
  19. 3Emotion. 3Emotion | Environmentally friendly, efficient, electric motion (2021). [Google Scholar]
  20. Hydrogen Council. Hydrogen Insights A perspective on hydrogen investment, market development and cost competitiveness. www.hydrogencouncil.com. (2021). [Google Scholar]
  21. Micena, R. P., Llerena-Pizarro, O. R., de Souza, T. M. & Silveira, J. L. Solar-powered Hydrogen Refueling Stations: A techno-economic analysis. International Journal of Hydrogen Energy (2019) DOI: 10.1016/j.ijhydene.2019.11.092. [Google Scholar]
  22. Elgowainy, A. Economic and Environmental Perspectives of Hydrogen Infrastructure Deployment Options. (2019). [Google Scholar]
  23. Bertuccioli, L. et al. Study on development of water electrolysis in the EU. www.e4tech.com (2014). [Google Scholar]
  24. Gallardo, F. I. et al. A Techno-Economic Analysis of solar hydrogen production by electrolysis in the north of Chile and the case of exportation from Atacama Desert to Japan. International Journal of Hydrogen Energy 46, 13709–13728 (2021). [Google Scholar]
  25. Carmo, M., Fritz, D. L., Mergel, J. & Stolten, D. A comprehensive review on PEM water electrolysis. International Journal of Hydrogen Energy vol. 38 4901–4934 (2013). [Google Scholar]
  26. SAE. J2719 202003. Hydrogen Fuel Quality for Fuel Cell Vehicles. https://www.sae.org/standards/content/j2719_202003/ (2020). [Google Scholar]
  27. Eypasch, M. et al. Model-based techno-economic evaluation of an electricity storage system based on Liquid Organic Hydrogen Carriers. Applied Energy 185, 320–330 (2017). [Google Scholar]
  28. Felgenhauer, M. & Hamacher, T. State-of-the-art of commercial electrolyzers and on-site hydrogen generation for logistic vehicles in South Carolina. International Journal of Hydrogen Energy 40, 2084–2090 (2015). [Google Scholar]
  29. Statista. Statista, Energy Indicators, Global Energy Prices - statistics & facts. https://www.statista.com/topics/1323/energy-prices/ (2021). [Google Scholar]
  30. Reuß, M. et al. Seasonal storage and alternative carriers: A flexible hydrogen supply chain model. Applied Energy 200, 290–302 (2017). [Google Scholar]
  31. Reuß, M., Grube, T., Robinius, M. & Stolten, D. A hydrogen supply chain with spatial resolution: Comparative analysis of infrastructure technologies in Germany. Applied Energy 247, 438–453 (2019). [Google Scholar]
  32. Ministero dei trasporti. Costo chilometrico medio relativo al consumo di gasolio delle imprese di autotrasporto per conto terzi. (2009). [Google Scholar]
  33. ENTSOG, GIE & Hydrogen Europe. How to transport and store hydrogen-facts and figures. (2021). [Google Scholar]
  34. Yang, C. & Ogden, J. Determining the lowest-cost hydrogen delivery mode. International Journal of Hydrogen Energy 32, 268–286 (2007). [Google Scholar]
  35. Simonnet, A. UC Davis Working Papers Title Technical Options For Distributed Hydrogen Refueling Stations in a Market Driven Situation Permalink https://escholarship.org/uc/item/3m3308s2 Publication Date. https://escholarship.org/uc/item/3m3308s2 (2005). [Google Scholar]
  36. Prince-Richard, S., Whale, M. & Djilali, N. A techno-economic analysis of decentralized electrolytic hydrogen production for fuel cell vehicles. International Journal of Hydrogen Energy 30, 1159–1179 (2005). [Google Scholar]
  37. Reddi, K., Elgowainy, A., Rustagi, N. & Gupta, E. Impact of hydrogen SAE J2601 fueling methods on fueling time of light-duty fuel cell electric vehicles. International Journal of Hydrogen Energy 42, 16675–16685 (2017). [Google Scholar]
  38. Reddi, K., Elgowainy, A., Rustagi, N. & Gupta, E. Impact of hydrogen refueling configurations and market parameters on the refueling cost of hydrogen. International Journal of Hydrogen Energy 42, 21855–21865 (2017). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.