Open Access
E3S Web Conf.
Volume 312, 2021
76th Italian National Congress ATI (ATI 2021)
Article Number 07011
Number of page(s) 14
Section Propulsion Systems for Sustainable Mobility
Published online 22 October 2021
  1. EEA. 2019. Air quality in Europe - 2019 report. ISBN 978-92-9480-088-6. [Google Scholar]
  2. Biresselioglu, M.E., Kaplan, M.D., Yilmaz, B.K., 2018. Electric mobility in Europe: A comprehensive review of motivators and barriers in decision making processes. Transportation Research Part A 109,1–13. [Google Scholar]
  3. Requia, W.J., Mohamed, M., Higgins, C.D., Araind, A., Fergusone, M. 2018. How clean are electric vehicles? Evidence-based review of the effects ofelectric mobility on air pollutants, greenhouse gas emissions and humanhealth. Atmospheric Environment 185,64–77. [Google Scholar]
  4. Onata, N.C., Kucukvar, M., Aboushaqrah, N.N.M., Jabbara, R. 2019. How sustainable is electric mobility? A comprehensive sustainability assessment approach for the case of Qatar. Applied Energy 2019,461–477. [Google Scholar]
  5. Girardi, P., Gargiulo, A., Brambilla, P.C., 2015. A comparative LCA of an electric vehicle and an internal combustion engine vehicle using the appropriate power mix: the Italian case study. Int J Life Cycle Assess 20: 1127–1142. [Google Scholar]
  6. Tagliaferri, C., Evangelisti, S., Acconcia, F., Domonech, T., Ekins, P., Barletta, D., Lettieri, P. 2016. Life cycle assessment of future electric and hybrid vehicles: A cradle-to-grave systems engineering approach. Chemical Engineeering Research and Design 112: 298–309. [Google Scholar]
  7. Helmers, E., Dietz, J., Weiss, M. 2020. Sensitivity Analysis in the Life-Cycle Assessment of Electric vs. Combustion Engine Cars under Approximate Real-World Conditions. Sustainability 12, 1241. [Google Scholar]
  8. Rosenfeld, D.C., Lindorfer, J., Fazeni-Fraisl, K. 2019. Comparison of advanced fuels-Which technology can win from the life cycle perspective? Journal of Cleaner Production 238, 117879. [Google Scholar]
  9. Di Maria, F., Mastrantonio, M., Uccelli, R., 2021. The life cycle approach for assessing the impact of municipal solid waste incineration on the environment and on human health. Science of the Total Environment 776,145785. [Google Scholar]
  10. Kim, K.H., Kabir, E., Kabir, S., 2015. A review on the human health impact of airborne particulate matter. Environmental International 74,136–143. [Google Scholar]
  11. Delfino, R.J., Staimer, N., Tjoa, T., Gillen, D.L., Schauer, J.J., Shafer, M.M., 2013. Airway inflammation and oxidative potential of air pollutant particles in a pediatric asthma panel. Journal of Exposure Analysis and Environmental Epidemiology 23, 466–473. [Google Scholar]
  12. Li, N., Sioutas, C., Cho, A., Schmitz, D., Misra, C., Sempf, J., Wang, M., Oberley, T., Froines, J., Nel, A., 2003. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environmental Health Perspective, 111, 455–460. [Google Scholar]
  13. Li, N., Wang, M., Bramble, L.A., Schmitz, D.A., Schauer, J.J., Sioutas, C., Harkema, J.R., Nel, A.E., 2009. The adjuvant effect of ambient particulate matter is closely reflected by the particulate oxidant potential. Environmental Health Perspective, 117, 1116–1123. [Google Scholar]
  14. Ntziachristos, L., Boulter, P., 2009. EMEP/EEA emission inventory guidebook 2009. Road vehicle tyre and brake wear-Road surface wear. Available at: [Google Scholar]
  15. BUWAL, 2000. Swiss Agency for the Environment, Forests and Landscape-Informationen zur Entsorgung von Altreifen. Available at: [Google Scholar]
  16. Garg, B., Cadle, S., Mulawa, P., Groblicki, P., Laroo, C., Parr, G., 2000. Brake wear particulate matter emissions. Environ. Sci. Technol. 34 (21), 4463e4469. Available at: DOI: 10.1021/es001108h [Google Scholar]
  17. Gibaek K. and Seokhwan L. (2018). Characteristics of Tire Wear Particles Generated by a Tire Simulator under Various Driving Conditions. Environ. Sci. Technol. 2018, 52, 12153–12161. DOI: 10.1021/acs.est.8b03459 [Google Scholar]
  18. Timmers, V.R.J.H., Achten, P.A.J., 2016. Non-exhaust PM emissions from electric vehicles. Atmos. Environ. [Google Scholar]
  19. Ferdinand H. Farwickzum Hagen, Marcel Mathissen, Tomasz Grabiec, Tim Hennicke, Marc Rettig, Jaroslaw Grochowicz, Rainer Vogt, Thorsten Benter (2019). On-road vehicle measurements of brake wear particle emissions. Atmospheric Environment 217, 116943. DOI: 10.1016/j.atmosenv.2019.116943. [Google Scholar]
  20. Del Duce, A., Gauch, M., Althaus, H.-J., 2016. Electric passenger car transport and passenger car life cycle inventories in ecoinvent version 3. Int J Life Cycle Assess 21:1314–1326. DOI 10.1007/s11367-014-0792-4 [Google Scholar]
  21. Simons, A., 2016. Road transport: new life cycle inventories for fossil-fuelled passenger cars and non-exhaust emissions in ecoinvent v3. Int. J. Life Cycle Assess. 21, 1299–1313. [Google Scholar]
  22. ICCT., 2020. International Council on Clean Transportation - European Vehicle Market Statistics Pocketbook 2018/19. Available online at: (accessed 25.04.2021) [Google Scholar]
  23. ICCT, 2021. European Vehicle Market Statistics Pocketbook 2019/20. Available online at: (accessed 25.04.2021) [Google Scholar]
  24. ACI., 2019. Italian Automobil Club - Self-portrait 2019-Statistical data on the Italian vehicle fleet consistency. Available at: [Google Scholar]
  25. ANFIA, 2020. Italian Association of the Automotive Industry - Studies and statistics. Available at: [Google Scholar]
  26. Sanchez, P.P.R., Ndiaye, A.B., Martin-Cejas, R.R., 2019. Plug-in hybrid electric vehicles (PHEVs): A possible perverse effect generated by environmental policies. Int. J. Transp. Dev. Integr. 3, 259–270. [Google Scholar]
  27. Ehrenberger, S.I., Konrad, M., Philipps, F., 2020. Pollutant emissions analysis of three plug-in hybrid electric vehicles using different modes of operation and driving conditions. Atmos. Environ. 234. [Google Scholar]
  28. Franco, V., Zacharopoulou, T., Hammer, J., Schmidt, H., Mock, P., Weiss, M., Samaras, Z., 2016. Evaluation of Exhaust Emissions from Three Diesel-Hybrid Cars and Simulation of After Treatment Systems for Ultralow Real-World NOx Emissions. Environ. Sci. Technol. 50, 13151–13159. [Google Scholar]
  29. Lijewski, P., Kozak, M., Fuc, P., Rymaniak, E., Ziolkowski, A., 2020. Exhaust emissions generated under actual operating conditions from a hybrid vehicle and an electric one fitted with a range extender. Transp. Res. Part D Transp. Environ. 78. [Google Scholar]
  30. Suarez-Bertoa, R., Pavlovic, J., Trentadue, G., Otura-Garcia, M., Tansini, A., Ciuffo, B., Astorga, C., 2019. Effect of Low Ambient Temperature on Emissions and Electric Range of Plug-In Hybrid Electric Vehicles. ACS Omega 4, 3159–3168. [Google Scholar]
  31. Suarez-Bertoa, R., Astorga, C., 2016. Unregulated emissions from light-duty hybrid electric vehicles. Atmos. Environ. 136, 134–143. [Google Scholar]
  32. ISPRA, 2020. Road Transport data 1990-2019. Available at: http://www.sinanet.isprambiente.itZitZsia-ispraZserie-storiche-emissioniZdati-trasporto-stradale/view [Google Scholar]
  33. Mehsein, K., Norsic, C., Chaillou, C., Nicolle, A., 2020. Minimizing secondary pollutant formation through identification of most influential volatile emissions in gasoline exhausts: Impact of the vehicle powertrain technology. Atmos. Environ. 226. [Google Scholar]
  34. Huang, Y., Surawski, N.C., Organ, B., Zhou, J.L., Tang, O.H.H., Chan, E.F.C., 2019. Fuel consumption and emissions performance under real driving: Comparison between hybrid and conventional vehicles. Sci. Total Environ. 659, 275–282. [Google Scholar]
  35. Suarez-Bertoa, R., Pechout, M., Vojtisek, M., Astorga, C., 2020. Regulated and nonregulated emissions from euro 6 diesel, gasoline and CNG vehicles under real-world driving conditions. Atmosphere 11, 204. [Google Scholar]
  36. Yang, Z., Liu, Y., Wu, L., Martinet, S., Zhang, Y., Andre, M., Mao, H., 2020. Real- world gaseous emission characteristics of Euro 6b light-duty gasoline- and dieselfueled vehicles. Transp. Res. Part D Transp. Environ. 78, 102215. [Google Scholar]
  37. Suarez-Bertoa, R., Mendoza-Villafuerte, P., Riccobono, F., Vojtisek, M., Pechout, M., Perujo, A., Astorga, C., 2017. On-road measurement of NH3 emissions from gasoline and diesel passenger cars during real world driving conditions. Atmos. Environ. 166, 488–497. [Google Scholar]
  38. Weber, C., Sundvor, I., Figenbaum, E., 2019. Comparison of regulated emission factors of Euro 6 LDV in Nordic temperatures and cold start conditions: Diesel- and gasoline direct-injection. Atmos. Environ. 206, 208–217. [Google Scholar]
  39. McCaffery, C., Zhu, H., Li, C., Durbin, T.D., Johnson, K.C., Jung, H., Brezny, R., Geller, M., Karavalakis, G., 2020. On-road gaseous and particulate emissions from GDI vehicles with and without gasoline particulate filters (GPFs) using portable emissions measurement systems (PEMS). Sci. Total Environ. 710. [Google Scholar]
  40. Garcia-Contreras, R., Soriano, J.A., Fernandez-Yanez, P., Sanchez-Rodriguez, L., Mata, C., Gomez, A., Armas, O., Cardenas, M.D., 2021. Impact of regulated pollutant emissions of Euro 6d-Temp light-duty diesel vehicles under real driving conditions. J. Clean. Prod. 286. [Google Scholar]
  41. Valverde, V., Giechaskiel, B., 2020. Assessment of Gaseous and Particulate Emissions of a Euro 6d-Temp Diesel Vehicle Driven >1300 km Including Six Diesel Particulate Filter Regenerations. Atmosphere 11, 645. [Google Scholar]
  42. ISO 14040. 2006. Environmental Management: Life Cycle Assessment, Principles and Guidelines. International Organization of Standardization, Geneva, p. 2006. [Google Scholar]
  43. ISO 14042. 2000. Environmental Management - Life Cycle Assessment - Life Cycle Impact Assessment. International Organization of Standardization, Geneva, p. 2000. [Google Scholar]
  44. ISO 14044. 2018. Environmental Management: Life Cycle Assessment-Requirements and guidelines. International Organization of Standardization, Geneva, p. 2018. [Google Scholar]
  45. ISPRA, 2019. Database of the Italian average road transport emission factors. Available at (accessed 22/04/2021). [Google Scholar]
  46. EC. 2010b. European Commission - Joint Research Centre - Institute for Environment and Sustainability. 2010. International Reference Life Cycle Data System (ILCD) Handbook - General guide for Life Cycle Assessment - Detailed guidance. First edition EUR 24708 EN March 2010 Publications OffICEV of the European Union Luxembourg, LU. [Google Scholar]
  47. Jolliet, O., Pennington, D., Amman, C., Pelichet, T., Margni, M. Crettaz, P., 2005. Comparative assessment of the toxic impact of metals on humans within IMPACT 2002. In: Dubreuil, A. (Ed.), Life Cycle Assessment of Metals - Issues and Research Directions. SETAC Press. ISBN 1-880611-62-7. [Google Scholar]
  48. Crobeddu, B., Aragao-Santiago, L., Bui, L.C., Boland, S., Squiban, A.B., 2017. Oxidative potential of particulate matter (PM2.5) as predictive indicator of cellular stress. Environmental Pollution 230: 125–133. [Google Scholar]
  49. Cho, A.K., Sioutas, C., Miguel, A.H., Kumagai, Y., Schmitz, D.A., Singh, M., et al., 2005. Redox activity of airborne particulate matter at different sites in the Los Angeles Basin. Environmental Research 99: 40–47. [Google Scholar]
  50. Verma, V., Rico-Martinez, R., Kotra, N., King, L., Liu, J., Snell, T.W., et al., 2012. Contribution of water-soluble and insoluble components and their hydrophobic/hydrophilic sub-fractions to the reactive oxygen species-generating potential of fine ambient aerosols. Environmental Science & Technology 46: 11384–11392. [Google Scholar]
  51. Verma, V., Fang, T., Guo, H., King, L., Bates, J.T., Peltier, R.E., et al., 2014. Reactive oxygen species associated with water-soluble PM2.5 in the southeastern United States: spatiotemporal trends and source apportionment. Atmospheric Chemistry and Physics 14: 12915–12930. [Google Scholar]
  52. Chirizzi, D., Cesari, D., Guascito, M.R., Donateo, A., Contini, D., 2017. Influence of Saharan dust outbreaks and carbon content on oxidative potential of water-soluble fractions of PM2.5 and PM10. Atmospheric Environment, 163: 1–8. [Google Scholar]
  53. Belis, C.A., Karagulian, F., Larsen, B.R., Hopke, P.K., 2013. Critical review and meta-analysis of ambient particulate matter source apportionment using receptor models in Europe. Atmospheric Environment 69: 94–108. [Google Scholar]
  54. Watson, J.G., Chen, L.W.A., Chow, J.C., Doraiswamy, P., Lowenthal, D.H., 2008. Source apportionment: findings from the U.S. supersites program. Journal of the Air and Waste Management Association 58: 265–288. [Google Scholar]
  55. Amato, F., Nava, S., Lucarelli, F., Querol, X., Alastuey, A., Baldasano, J.M., Pandolfi, M., 2010. A comprehensive assessment of PM emissions from paved roads: real-world emission factors and intense street cleaning trials. Science of the Total Environment 408: 4309–4318. [Google Scholar]
  56. Schauer, J.J., Lough, G.C., Shafer, M.M., Christensen, W.F., Arndt, M.F., DeMinter, J.T., Park, J.-S., 2006. Characterization of Metals Emitted from Motor Vehicles. Health Effect Institute. [Google Scholar]
  57. Ahmad, M., Yu, Q., Chen, J., Cheng, S., Qin, W., Zhang, Y., 2021. Chemical characteristics, oxidative potential, and sources of PM2.5 in wintertime in Lahore and Peshawar, Pakistan. Journal of Environmental Sciences 102: 148–158. [Google Scholar]
  58. Cesari, D., Merico, E., Grasso, F.M., Decesari, S., Belosi, F., Manarini, F., De Nuntiis, P., Rinaldi, M., Volpi, F., Gambaro, A., Morabito, E., Contini, D., 2019. Source Apportionment of PM2.5 and of its Oxidative Potential in an Industrial Suburban Site in South Italy. Atmosphere 10: 758. [Google Scholar]
  59. Paraskevopoulou, D., Bougiatioti, A., Stavroulas, I., Fang, T., Lianou, M., Liakakou, E., Gerasopoulos, E., Weber, R., Nenes, A., Mihalopoulos, N., 2019. Yearlong variability of oxidative potential of particulate matter in an urban Mediterranean environment. Atmospheric Environment 206: 183–196. [Google Scholar]
  60. Jedynska, A., Hoek, G., Wang, M., Yang, A., Eeftens, M., Cyrys, J., Keuken, M., Ampe, C., Beelen, R., Cesaroni, G., et al., 2017. Spatial variations and development of land use regression models of oxidative potential in ten European study areas. Atmospheric Environment 150: 24–32. [Google Scholar]
  61. Visentin, M., Pagnoni, A., Sarti, E., Pietrogrande, M.C., 2016. Urban PM2.5 oxidative potential: Importance of chemical species and comparison of two spectrophotometric cell-free assays. Environmental Pollution 219: 72–79. [Google Scholar]
  62. Verma, V., Ning, Z., Cho, A.K., Schauer, J.J., Shafer, M.M., Sioutas, C., 2009. Redox activity of urban quasi-ultrafine particles from primary and secondary sources. Atmospheric Environment 43: 6360–6368. [Google Scholar]
  63. Buoter, A., Hache, E., Ternal, C., Beauchet, S., 2020. Comparative environmental life cycle assessment of several powertrain types for cars and buses in France for two driving cycles: “worldwide harmonized light vehicle test procedure” cycle and urban cycle. Int J of Life Cycle Assess 25, 1545–1564. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.