Open Access
E3S Web Conf.
Volume 312, 2021
76th Italian National Congress ATI (ATI 2021)
Article Number 07020
Number of page(s) 12
Section Propulsion Systems for Sustainable Mobility
Published online 22 October 2021
  1. Heywood J.B. Internal Combustion Engine Fundamentals. McGraw-Hill, 1988. [Google Scholar]
  2. Sarathy S.M., Farooq A., Kalghatgi G.T. Recent progress in gasoline surrogate fuels. Prog. Energy Combust. Sci. 2018;65:67–108. [Google Scholar]
  3. Kalghatgi G.T. Auto-ignition quality of pratical fuels and implications for fuel requirements of future SI and HCCI engines. SAE Technical Paper 2005-01-0239 [Google Scholar]
  4. Kalghatgi G.T. Fuel Anti-Knock Quality-Part II. Vehicle Studies-How Relevant in Motor Octane Number in modern engines? SAE paper 2001-01-3585, 2001. [Google Scholar]
  5. Bozza F., Fontanesi S., Gimelli A., Severi E., Siano D. Numerical and Experimental Investigation of Fuel Effects on Knock Occurrence and Combustion Noise in a 2-Stroke Engine. SAE Int. J. Fuels Lubr. 2012;5(2):674–695. [Google Scholar]
  6. Shekhawat Y., Haworth D.C., D'Adamo, A., Berni, F., Fontanesi, S., Schiffmann, P. et al. An Experimental and Simulation Study of Early Flame Development in a Homogeneous-charge Spark-Ignition Engine. Oil Gas Sci. Technol. - Rev. IFP 2017;72(5):32. [Google Scholar]
  7. Del Pecchia M., Pessina V., Berni F., D'Adamo, A., Fontanesi, S. Gasoline-ethanol blend formulation to mimic laminar flame speed and auto-ignition quality in automotive engines. Fuel 264, 116741, 2020. [Google Scholar]
  8. D'Adamo, A., Breda, S., Iaccarino, S., Berni, F., Fontanesi, S., Zardin, B. et al. Development of a RANS-Based Knock Model to Infer the Knock Probability in a Research Spark-Ignition Engine. SAE Int. J. Engines 10(3):722–739, 2017, [Google Scholar]
  9. Fontanesi S., Cicalese G., D’Adamo, A., Cantore, G. A Methodology to Improve Knock Tendency Prediction in High Performance Engines. Energy Procedia 45:768–778, 2014. [Google Scholar]
  10. Breda S., D'Adamo, A., Fontanesi, S., D'Orrico, F., Irimescu, A., Merola, S. et al. Numerical Simulation of Gasoline and n-Butanol Combustion in an Optically Accessible Research Engine. SAE Int. J. Fuels Lubr. 10(1):32–55, 2017, [Google Scholar]
  11. Del Pecchia M., Fontanesi S. A methodology to formulate multicomponent fuel surrogates to model flame propagation and ignition delay. Fuel 2020;279:118337. [Google Scholar]
  12. Del Pecchia M., Sparacino S., Pessina V., Fontanesi S., Breda S., Irimescu A. et al. Development of a Sectional Soot Model Based Methodology for the Prediction of Soot Engine-Out Emissions in GDI Units. SAE Technical Paper 2020-01-0239, 2020, DOI: 10.4271/2020-01-0239 [Google Scholar]
  13. Sarathy S.M., Kukkadapu G., Mehl M., Javed T., Ahmed A., et al. (2016) Compositional effects on the ignition of FACE gasolines. Combustion and Flame 169: 171–193. Available: [Google Scholar]
  14. Fontanesi S., Paltrinieri S., Tiberi A., D'Adamo, A. LES Multi-cycle Analysis of a High Performance GDI Engine. SAE Technical Paper 2013-01-1080, 2013. [Google Scholar]
  15. Fontanesi S., D'Adamo, A., Paltrinieri, S., Cantore, G., Rutland, C.J. Assessment of the Potential of Proper Orthogonal Decomposition for the Analysis of Combustion CCV and Knock Tendency in a High Performance Engine. SAE Technical Paper 2013-24-0031, 2013. [Google Scholar]
  16. D'Adamo, A., Breda, S., Berni, F., Fontanesi, S. Understanding the Origin of Cycle- to-Cycle Variation Using Large-Eddy Simulation: Similarities and Differences between a Homogeneous Low-Revving Speed Research Engine and a Production DI Turbocharged Engine. SAE Int. J. Eng. 2019;12(1):79–100. [Google Scholar]
  17. Krastev V.K., D’Adamo, A., Berni, F., Fontanesi, S. Validation of a zonal hybrid URANS/LES turbulence modeling method for multi-cycle engine flow simulation. Int. J. Engine Res. 2020;21(4):632–648. [Google Scholar]
  18. Rulli F., Barbato A., Fontanesi S., D’Adamo, A. Large eddy simulation analysis of the turbulent flow in an optically accessible internal combustion engine using the overset mesh technique. Int. J. Engine Res. 2021;22(5):1440–1456. [Google Scholar]
  19. Iacovano C., Zeng Y., Anbarasu M., Fontanesi S., D'Adamo, A. Validation of a LES Spark-Ignition Model (GLIM) for Highly-Diluted Mixtures in a Closed Volume Combustion Vessel. SAE Technical Paper 2021-01-0399, 2021. [Google Scholar]
  20. Fontanesi S., Cicalese G., Cantore G., D'Adamo, A. Integrated In-Cylinder/CHT Analysis for the Prediction of Abnormal Combustion Occurrence in Gasoline Engines. SAE Technical Paper 2014-01-1151, 2014. [Google Scholar]
  21. D'Adamo, A., Breda, S., Fontanesi, S., Irimescu, A., Merola S.S., Tornatore, C. A RANS knock model to predict the statistical occurrence of engine knock. Appl. Energy 2017;191:251–263. [Google Scholar]
  22. Livengood J.C., Wu P.C. Correlation of autoignition phenomena in internal combustion engines and rapid compression machines. Symp Int Combust 1955; 5: 347–356. [Google Scholar]
  23. D’Adamo, A., Breda, S., Berni, F., Fontanesi, S. The potential of statistical RANS to predict knock tendency: Comparison with LES and experiments on a spark-ignition engine” Appl. Energy 2019;249:126–142 [Google Scholar]
  24. Berni F., Fontanesi S. A 3D-CFD methodology to investigate boundary layers and assess the applicability of wall functions in actual industrial problems: A focus on in- cylinder simulations. Appl. Therm. Eng. 174, 115320, 2020. [Google Scholar]
  25. Berni F., Cicalese G., Borghi M., Fontanesi S. Towards grid-independent 3D-CFD wall-function-based heat transfer models for complex industrial flows with focus on in-cylinder simulations. Appl. Therm Eng. 2021; 190, 116838. [Google Scholar]
  26. Iacovano C., D’Adamo, A., Fontanesi, S., Di Ilio, G., Krastev V.K. Application of a zonal hybrid URANS/LES turbulence model to high and low-resolution grids for engine simulation. Int. J. Engine Res. 2020. DOI: 10.1177/1468087420931712 [Google Scholar]
  27. Berni F., Fontanesi S., Cicalese G., D'Adamo, A. Critical Aspects on the Use of Thermal Wall Functions in CFD In-Cylinder Simulations of Spark-Ignition Engines. SAE Int. J. Commer. Veh. 2017;10(2):547–561. [Google Scholar]
  28. Fontanesi S., Cicalese G., D'Adamo, A., Pivetti, G. Validation of a CFD Methodology for the Analysis of Conjugate Heat Transfer in a High Performance SI Engine. SAE Technical Paper 2011-24-0132, 2011. [Google Scholar]
  29. Colin O., Benkenida A. The 3-Zone Extended Coherent Flame Model (ECFM-3Z) for computing premixed/diffusion combustion, Oil Gas Sci. Technol. - Rev. IFP 59(6):593–609, 2014. [Google Scholar]
  30. Del Pecchia M., Breda S., D'Adamo, A., Fontanesi, S., Irimescu, A., Merola, S.S. Development of Chemistry-Based Laminar Flame Speed Correlation for PartLoad SI Conditions and Validation in a GDI Research Engine. SAE Int. J. Engines 2018;11(6):715–741. [Google Scholar]
  31. Breda S., D'Adamo, A., Fontanesi, S., Giovannoni, N., Testa, F., Irimescu, A., et al. CFD Analysis of Combustion and Knock in an Optically Accessible GDI Engine. SAE Int. J. Engines 2016;9(1):641–656. [Google Scholar]
  32. Sparacino S., Berni F., D’Adamo, A., Krastev V.K., Cavicchi, A., Postrioti, L. Impact of the Primary Break-Up Strategy on the Morphology of GDI Sprays in 3D-CFD Simulations of Multi-Hole Injectors. Energies. 2019;12(15):2890. [Google Scholar]
  33. Sparacino S., Berni F., Cavicchi A., Postrioti L. Impact of different droplets size distribution on the morphology of GDI sprays: Application to multi-hole injectors. AIP Conference Proceedings 2191, 020139, 2019. [Google Scholar]
  34. Malaguti S., Cantore G., Fontanesi S., Lupi R., Rosetti A. CFD Investigation of Wall Wetting in a GDI Engine under Low Temperature Cranking Operations. SAE Technical Paper 2009-01-0704, 2009. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.