Open Access
E3S Web Conf.
Volume 312, 2021
76th Italian National Congress ATI (ATI 2021)
Article Number 07021
Number of page(s) 12
Section Propulsion Systems for Sustainable Mobility
Published online 22 October 2021
  1. D. Takahashi et al. "Combustion Development to Realize High Thermal Efficiency Engines", SAE Int. J. Engines 9, 2016-01-0693 (2016). [Google Scholar]
  2. T. Johnson and A. Joshi. "Review of Vehicle Engine Efficiency and Emissions", SAE Int. J. Engines 11, 2018-01-0329 (2018). [Google Scholar]
  3. S. Zhu et al., “A review of water injection applied on the internal combustion engine,” Energy Convers. Manag, vol. 184, no. January, pp. 139–158, 2019. [Google Scholar]
  4. C. Gong, Z. Zhang, J. Sun, Y. Chen, and F. Liu, “Computational study of nozzle spray-line distribution effects on stratified mixture formation, combustion and emissions of a high compression ratio DISI methanol engine under lean-burn condition”, Energy, vol. 205, p. 118080, 2020. [Google Scholar]
  5. V. Cruccolini et al., “Lean combustion analysis using a corona discharge igniter in an optical engine fueled with methane and a hydrogen-methane blend,” Fuel, vol. 259, no. September 2019, p. 116290, 2020. [Google Scholar]
  6. Abidin, Z. and Chadwell, C., “Parametric Study and Secondary Circuit Model Calibration Using Spark Calorimeter Testing,” SAE Technical Paper. [Google Scholar]
  7. D. Jung and N. Iida, “An investigation of multiple spark discharge using multi-coil ignition system for improving thermal efficiency of lean SI engine operation”, Appl. Energy, vol. 212, no. December 2017, pp. 322–332, 2018. [Google Scholar]
  8. Jung D., Sasaki K., Iida N. “Effects of increased spark discharge energy and enhanced in-cylinder turbulence level on lean limits and cycle-to-cycle variations of combustion for SI engine operation.”, Appl Energy 2017;205(August):1467–1477. [Google Scholar]
  9. Idicheria, C.A., Yun, H., and Najt, P.M., “An Advanced Ignition System for High Efficiency Engines,” Ignition Systems for Gasoline Engines : 4th International Conference, December 6 - 7, 2018, Berlin, Germany, 40–54, 2018. [Google Scholar]
  10. Shiraishi, T. and Urushihara, T., “Fundamental Analysis of Combustion Initiation Characteristics of Low Temperature Plasma Ignition for Internal Combustion Gasoline Engine,” SAE Technical Paper, 399–408, 2011. [Google Scholar]
  11. Starikovskaia, S. M., “Plasma assisted ignition and combustion.” Journal of Physics D: Applied Physics: 39:R265–R299, 2006. DOI: 10.1088/0022-3727/39/16/R0. [Google Scholar]
  12. Cruccolini, V., Discepoli, G., Ricci, F., Petrucci, L. et al., “Comparative Analysis between a Barrier Discharge Igniter and a Streamer-Type Radio-Frequency Corona Igniter in an Optically Accessible Engine in Lean Operating Conditions,” SAE Technical Paper 2020-01-0276, 2020. [Google Scholar]
  13. F. Ricci, J. Zembi, M. Battistoni, C. Grimaldi, and G. Discepoli, “Experimental and Numerical Investigations of the Early Flame Development Produced by a Corona Igniter,” SAE Technical Paper 2019. [Google Scholar]
  14. V. Cruccolini et al., “Multidimensional modeling of non-equilibrium plasma generated by a radiofrequency corona discharge,” Plasma Sources Sci. Technol., vol. 29, no. 11, p. 115013, Nov. 2020. [Google Scholar]
  15. Ricci, F., Petrucci, L., Cruccolini, V., Discepoli, G., Grimaldi, C.N., and Papi, S., “Investigation of the Lean Stable Limit of a Barrier Discharge Igniter and of a Streamer-Type Corona Igniter at Different Engine Loads in a Single-Cylinder Research Engine,” Proceedings 58(1): 11, 2020. [Google Scholar]
  16. G. Discepoli, V. Cruccolini, F. Ricci, A. Di Giuseppe, S. Papi, and C. N. Grimaldi, “Experimental characterisation of the thermal energy released by a Radio-Frequency Corona Igniter in nitrogen and air”, Appl. Energy, vol. 263, no. February, p. 114617, 2020. [Google Scholar]
  17. Discepoli, G.; Cruccolini, V.; Dal Re, M.; Zembi, J.; Battistoni, M.; Mariani, F.; Grimaldi, C.N. Experimental Assessment of Spark and Corona Igniters Energy Release. Energy Procedia 2018, 148, 1262–1269. [Google Scholar]
  18. V. Cruccolini et al., ‘An Optical Method to Characterize Streamer Variability and Streamer-to-Flame Transition for Radio-Frequency Corona Discharges’, AppSci 2020. [Google Scholar]
  19. Jung D., Sasaki K., Lida, N. “Effects of increased spark discharge energy and enhanced in-cylinder turbulence level on lean limits and cycle-to cycle variations of combustion for SI engine operation.”, Appl Energy 2017. [Google Scholar]
  20. A. Cimarello, et al., “Analysis of RF Corona Ignition in Lean Operating Conditions Using an Optical Access Engine”, SAE Technical Paper 2017. [Google Scholar]
  21. Wolk, B.M.; Ekoto, I. Calorimetry and Imaging of Plasma Produced by a Pulsed Nanosecond Discharge Igniter in EGR Gases at Engine-Relevant Densities. SAE Int. J. Engines 2017. [Google Scholar]
  22. Ju, Y.; Sun, W. Plasma assisted combustion: Dynamics and chemistry. [Google Scholar]
  23. A. You, M. A. Y. Be, and I. In, “The variation of ionization with air / fuel ratio for a spark-ignition engine,” vol. 505, no. August, 2008. [Google Scholar]
  24. C. S. Parmenter and J. D. Rau, “Fluorescence quenching in aromatic hydrocarbons by oxygen,” J. Chem. Phys., vol. 51, no. 5, pp. 2242–2246, 1969. [Google Scholar]
  25. F. Ricci et al., “Energy characterization of an innovative non-equilibrium plasma ignition system based on the dielectric barrier discharge via pressure-rise calorimetry,” Energy Convers. Manag., vol. 244, no. April, p. 114458, 2021. [Google Scholar]
  26. Scarcelli, R.; Wallner, T.; Som, S.; Biswas, S.; Ekoto, I.; Breden, D.; Karpatne, A.; Raja, L. Modeling NonEquilibrium Discharge and Validating Transient Plasma Characteristics at Above-Atmospheric Pressure. Plasma Source Sci. Technol. 2018, 27, 124006, DOI: 10.1088/1361-6595/aaf539. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.