Open Access
Issue
E3S Web Conf.
Volume 312, 2021
76th Italian National Congress ATI (ATI 2021)
Article Number 08001
Number of page(s) 15
Section Systems for Sustainable Energy Generation
DOI https://doi.org/10.1051/e3sconf/202131208001
Published online 22 October 2021
  1. M. Kinzel, Q. Mulligan, J.O. Dabiri, Energy exchange in an array of vertical-axis wind turbines, Journal of Turbulence, 13: 1–13, (2012). [Google Scholar]
  2. J.O. Dabiri, Potential order-of-magnitude enhancement of wind farm power density via counter-rotating vertical-axis wind turbine arrays, J Renew Sustain Energy 3:43104, (2011). [Google Scholar]
  3. S. Zanforlin, T. Nishino, Fluid dynamic mechanisms of enhanced power generation by closely spaced vertical axis wind turbines, Renew Energy 99: 1213–1226, (2016). [Google Scholar]
  4. S. Zanforlin, Advantages of vertical axis tidal turbines set in close proximity: A comparative CFD investigation in the English Channel, Ocean Engineering 156: 358–372, (2018). [Google Scholar]
  5. D.P. Coiro, F. Nicolosi, A. De Marco, S. Melone, F. Montella, Dynamic behavior of novel vertical axis Tidal current turbine: numerical and experimental investigations, in: Proc. of 15th Int. Offshore and Polar Engin. Conf. Seoul, Korea (2005). [Google Scholar]
  6. P. Chougule, S. Nielsen, Overview and Design of self-acting pitch control mechanism for vertical axis wind turbine using multi body simulation approach, J. Phys. Conf. 524: 012055, (2014). [Google Scholar]
  7. L.X. Zhang, Y. Pei, Y.B. Liang, F.Y. Zhang, Y. Wang, J.J. Meng, H.R. Wang, Design and implementation of straight-bladed vertical Axis wind turbine with collective pitch control, in: Proceedings of the 2015 IEEE Int. Conf, on Mechatronics and Automation Beijing, China, pp. 2–5, (2015). [Google Scholar]
  8. T. Burton, D. Sharpe, N. Jenkins, E. Bossanyi, Wind Energy Handbook, John Wiley &Sons [Google Scholar]
  9. G. Umgiesser, C. Ferrarin, Fivan, M. Bajo, SHYFEM-Model/Shyfem: Stable Release 7.4.1; Version VERS_7_4_1; Zenodo: Meyrin, Switzerland, 2018; Available online: http://doi.org/10.5281/zenodo.1311751 (accessed on 13 July 2018). [Google Scholar]
  10. S. Deluca, S. Zanforlin, B. Rocchio, P.J. Haley, C. Foucart, C. Mirabito, P.F.J. Lermusiaux, Scalable Coupled Ocean and Water Turbine Modeling for Assessing Ocean Energy Extraction, OCEANS 2018 MTS/IEEE Charleston, OCEAN 8604646, (2018). [Google Scholar]
  11. D. A. Spera. Wind Turbine Technology: Fundamental Concepts of Wind Turbine Engineering, Solar Energy, 62(2):XVII, (2009). [Google Scholar]
  12. S. Zanforlin, S. Deluca, Effects of the Reynolds number and the tip losses on the optimal aspect ratio of straight-bladed Vertical Axis Wind Turbines, Energy 148 179–195, (2018). [Google Scholar]
  13. A.H. Birjandi, E.L. Bibeau, V. Chatoorgoon, A. Kumar, Power measurement of hydrokinetic turbines with free-surface and blockage effect, Ocean Engin. 69: 9–17, (2013). [Google Scholar]
  14. N. Kolekar, A. Banerjee, Performance characterization and placement of a marine hydrokinetic turbine in a tidal channel under boundary proximity and blockage effects, Applied Energy 148: 121–133, (2015). [Google Scholar]
  15. R. Ramirez-Mendoza, L. Murdoch, L. Jordan, L. Amoudry, S. McLelland, R. Cooke, P. Thorne, S. Simmons, D. Parsons, M. Vezza, Asymmetric effects of a modelled tidal turbine on the flow and seabed, Renew. Energy 159: 238–249, (2020). [Google Scholar]
  16. P. Gillibrand, R. Walters, J. McIlvenny, Numerical Simulations of the Effects of a Tidal Turbine Array on Near-Bed Velocity and Local Bed Shear Stress, Energies 9:852, (2016). [Google Scholar]
  17. W. McCroskey. The phenomenon of dynamic stall, NASA Technical Memorandum, 81264, (1981). [Google Scholar]
  18. J. Nedic, J. Vassilicos. Vortex shedding and aerodynamic performance of airfoil with multiscale trailing-edge modifications. AIAA Journal, 53: 3240–3250, (2015) [Google Scholar]
  19. B. Rocchio, C. Chicchiero, M.V. Salvetti, S. Zanforlin, A simple model for deep dynamic stall conditions, Wind Energy 23(4):915–938, (2020). [Google Scholar]
  20. Available: https://www.ansys.com/it-it/products/fluids/ansys-fluent [Google Scholar]
  21. D. C. Wilcox, Formulation of the k-m turbulence model revisited, AIAA J. 46: 2823–2838, (2008) [Google Scholar]
  22. M. Pucci, D. Bellafiore, S. Zanforlin, B. Rocchio, G. Umgiesser, Embedding of a Blade-Element Analytical Model into the SHYFEM Marine Circulation Code to Predict the Performance of Cross-Flow Turbines, Journal of Marine Science and Engineering 8(12), pp. 1–21, 1010, (2020). [Google Scholar]
  23. R. Bravo, S. Tullis, S. Ziada, Performance testing of a small vertical-axis wind turbine. In Proceedings of the 21st Canadian Congress of Applied Mechanics CANCAM, Toronto, ON, Canada, 3-7 June (2007). [Google Scholar]
  24. A. Vergaerde, T. De Troyer, L. Standaert, J. Kluczewska-Bordier, D. Pitance, A. Immas, F. Silvert, M.C. Runacres, Experimental validation of the power enhancement of a pair of vertical-axis wind turbines, Renewable Energy 146: 181–187, (2020) [Google Scholar]
  25. S. Zanforlin and P. Lupi. Investigation of the wake energy recovery of cross-flow turbines in paired configuration by means of 3d-CFD and analysis of the streamwise momentum budget, 76° Congresso Nazionale ATI, Roma 15-17 Settembre 2021 [Google Scholar]
  26. A.J. Goward Brown, S.P. Neill, M.J. Lewis, Tidal energy extraction in three-dimensional ocean models, Renewable Energy 114: 244–257, (2017). [Google Scholar]
  27. W.Z. Shen, R. Mikkelsen, J.N. Sorensen, Tip Loss Corrections for Wind turbine Computations, Wind Energy 8: 457–475, (2005). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.