Open Access
Issue
E3S Web Conf.
Volume 312, 2021
76th Italian National Congress ATI (ATI 2021)
Article Number 07024
Number of page(s) 21
Section Propulsion Systems for Sustainable Mobility
DOI https://doi.org/10.1051/e3sconf/202131207024
Published online 22 October 2021
  1. European Parliament, Regulation (EU) No 333/2014, Off. J. of the Eur. Un. (2014). [Google Scholar]
  2. European Parliament, Regulation (EU) No 253/2014, Off. J. of the Eur. Un. (2014). [Google Scholar]
  3. EEA, Annual European Union greenhouse gas inventory 1990 - 2019 and inventory report 2021, (2021). [Google Scholar]
  4. IEA, Global EV Outlook 2021, (2021). [Google Scholar]
  5. S.I. Ehrenberger, M. Konrad, F. Philipps, Pollutant emissions analysis of three plug-in hybrid electric vehicles using different modes of operation and driving conditions, Atmos. Environ. 234 (2020) 117612. https://doi.org/10.1016/j.atmosenv.2020.117612 [Google Scholar]
  6. N. Rietmann, B. Hügler, T. Lieven, Forecasting the trajectory of electric vehicle sales and the consequences for worldwide CO2 emissions, J. Clean. Prod. 261 (2020) 121038. https://doi.org/10.1016/jjclepro.2020.121038 [Google Scholar]
  7. G. Zheng, Z. Peng, Life Cycle Assessment (LCA) of BEV’s environmental benefits for meeting the challenge of ICExit (Internal Combustion Engine Exit), En. Rep. 7 (2021) 1203–1216. https://doi.org/10.1016Zj.egyr.2021.02.039 [Google Scholar]
  8. J. Gao, G. Tian, A. Sorniotti, A. E. Karci, R. Di Palo, Review of thermal management of catalytic converters to decrease engine emissions during cold start and warm up, Applied Thermal Engineering 147 (2019) 177–187., https://doi.org/10.1016/j.applthermaleng.2018.10.037 [Google Scholar]
  9. D. Di Battista, D. Vittorini, F. Fatigati, R. Cipollone, Technical review of opportunities to reduce the warm-up time of lubricant oil in a light-duty diesel engine, AIP Conference Proceedings 2191, 020065 (2019), https://doi.org/10.1063Z1.5138798 [CrossRef] [Google Scholar]
  10. D. Vittorini, D. Di Battista, R. Cipollone, Engine oil warm-up through heat recovery on exhaust gases - Emissions reduction assessment during homologation cycles, Therm. Sc. and Eng. Progr. 5 (2018) 412–421., https://doi.orgZ10.1016Zj.tsep.2018.01.010 [Google Scholar]
  11. R. Cipollone, D. Di Battista, A. Gualtieri, A novel engine cooling system with two circuits operating at different temperatures, Energy Conversion and Management, 75, pp. 581–592, (2013), http://dx.doi.org/10.1016/j.enconman.2013.07.010 [CrossRef] [Google Scholar]
  12. H. Chen et al., FCA US LLC, Chiller system for an engine with a forced induction system, United States Patent, US 10006339B2, (2018). [Google Scholar]
  13. D. E. Hornback et al., FCA US LLC, Vehicle thermal system for reduced fuel consumption, United States Patent, US 10216258B1, (2019). [Google Scholar]
  14. D. Di Battista, R. Cipollone, High efficiency air conditioning model based analysis for the automotive sector, International Journal of Refrigeration, 64, pp. 108–122, (2016), http://dx.doi.org/10.1016/j.ijrefrig.2015.12.014 [CrossRef] [Google Scholar]
  15. R. Cipollone, D. Di Battista, A. Gualtieri, Head and block split cooling in ICE, IFAC Proceedings Volumes (IFAC-PapersOnline), 45 (30), pp. 400–407, (2012), https://doi.org/10.3182/20121023-3-FR-4025.00056 [Google Scholar]
  16. T. Castiglione, P. Morrone, L. Falbo, D. Perrone, S. Bova, Application of a model-based controller for improving internal combustion engines fuel economy, Energies, 13 (5), art. no. 1148, (2020), https://doi.org/10.3390/en13051148 [CrossRef] [Google Scholar]
  17. A. K. Haghighat, S. Roumi, N. Madani, D. Bahmanpour, M. G. Olsen, An intelligent cooling system and control model for improved engine thermal management, Applied Thermal Engineering 128 (2018) 253–263., http://dx.doi.org/10.1016/j.applthermaleng.2017.08.102 [Google Scholar]
  18. H. Mu, Y. Wang, H. Teng, Y. Jin, X. Zhao, X. Zhang, Cooling system based on double-ball motor control valve, Advances in Mechanical Engineering, Vol. 13(5) 1–12 (2021), https://doi.orgZ10.1177Z16878140211011280 [Google Scholar]
  19. L. Mariani, M. Di Bartolomeo, D. Di Battista, R. Cipollone, F. Fremondi, R. Roveglia, Experimental and numerical analyses to improve the design of engine coolant pumps, E3S Web of Conf. 197, 06017 (2020), https://doi.org.10.1051Ze3sconfZ202019706017 [CrossRef] [EDP Sciences] [Google Scholar]
  20. R. Cipollone, D. Di Battista, G. Contaldi, S. Murgia, M. Mauriello, Development of a sliding vane rotary pump for engine cooling, Energy Procedia 81 (2015) 775–783. https://doi.orgZ10.1016Zj.egypro.2015.12.083 [CrossRef] [Google Scholar]
  21. R. Cipollone, G. Bianchi, D. Di Battista, F. Fatigati, Fuel economy benefits of a new engine cooling pump based on sliding vane technology with variable eccentricity, Energy Procedia 82 (2015) 265–272. https://doi.org.10.1016Zj.egypro.2015.12.032 [CrossRef] [Google Scholar]
  22. R. Cipollone, D. Di Battista, Sliding vane rotary pump in engine cooling system for automotive sector, Appl. Therm. Eng. 76 (2015) 157–166. https://doi.org.10.1016Zj.applthermaleng.2014.11.001 [CrossRef] [Google Scholar]
  23. G. Bianchi, F. Fatigati, S. Murgia, R. Cipollone, Design and analysis of a sliding vane pump for waste heat to power conversion systems using organic fluids, Appl. Therm. Eng. 124 (2017) 1038–1048. https://doi.org.10.1016Zj.applthermaleng.2017.06.083 [CrossRef] [Google Scholar]
  24. N. Stosic, I. Smith, A. Kovacevic, E. Mujic, Review of Mathematical Models in Performance Calculation of Screw Compressors, International Journal of Fluid Machinery and Systems, Vol.4, No.2, April-June, (2011), DOI: 10.5293ZIJFMS.2011.4.2.200. [Google Scholar]
  25. I.K. Smith, N. Stosic, A. Kovacevic, Power Recovery from Low Grade Heat by Means of Screw Expanders, Woodhead Publishing, (2014), ISBN 978-1-78242-189-4. [Google Scholar]
  26. Z. Wang, H. Wang, J. Wang, Q. Li, Q. Feng, Theoretical study on wear characteristics of single screw refrigeration compressor with multicolumn envelope meshing pair, International Journal of Refrigeration 102 (2019) 1–11., https://doi.org/10.1016/j.ijrefrig.2019.03.004 [Google Scholar]
  27. D. Ziviani, E. A. Groll, J. E. Braun, M. De Paepe, Review and update on the geometry modeling of single-screw machines with emphasis on expanders, International Journal of Refrigeration 92 (2018) 10–26., https://doi.org/10.1016/j.ijrefrig.2018.05.029 [Google Scholar]
  28. I. J. Karassik, J. P. Messina, P. Cooper, C. C. Heald, Pump Handbook, 3rd Edition, McGraw-Hill, (2001). [Google Scholar]
  29. P. Dong, S. Zhao, Y. Zhao, P. Zhang, Y. Wang, Design and experimental analysis of end face profile of tri-screw pump, Institution of Mechanical Engineers Part A, (2019), DOI: 10.1177/0957650919870373. [Google Scholar]
  30. J. Xu, Q. Feng, W. Wu, Geometrical design and investigation of a new profile of the three screw pump, J. Mech. Des. Trans. ASME. 133 (2011) 1–5. https://doi.org/10.1115Z1.4004588 [Google Scholar]
  31. Q. Tang, Y. Zhang, Screw optimization for performance enhancement of a twin-screw pump, Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 228 (2014) 73–84. https://doi.org/10.1177/0954408913478602 [CrossRef] [Google Scholar]
  32. E. Mujic, A. Kovacevic, N. Stosic, I. Smith, Advanced Design Environment for Screw Machines, Int. Compress. Eng. Conf., (2010). [Google Scholar]
  33. Y. Lu, A. Kovacevic, M. Read, N. Basha, Numerical Study of Customised Mesh for Twin Screw Vacuum Pumps, Designs, 3(4), 52, (2019), https://doi.org/10.3390/designs3040052 [CrossRef] [Google Scholar]
  34. D. Yan, A. Kovacevic, Q. Tang, S. Rane, Numerical investigation of cavitation in twinscrew pumps, Institution of Mechanical Engineers Part C, (2017), DOI: 10.1177/0954406217740927. [Google Scholar]
  35. A. Putira, Parametrization of Triple Screw Pumps for Aerospace Applications, (2018), https://commons.erau.edu/edt [Google Scholar]
  36. H. Schlichting, K. Gerten, Boundary-Layer Theory, Ninth Edit, Springer, (2017), https://doi.org/10.1108/eb029898 [Google Scholar]
  37. G.C. Mimmi, P.E. Pennacchi, Design of three-screw positive displacement rotary pumps, Trans. Eng. Sci. 7, (1995). [Google Scholar]
  38. G.C. Mimmi, P.E. Pennacchi, Computation of pressure loads in three screw pump rotors, J. Mech. Des. Trans. ASME, 120 (1998), 581–588, https://doi.org/10.1115/L2829318 [CrossRef] [Google Scholar]
  39. G.C. Mimmi, P.E. Pennacchi, Dynamic effects of pressure loads in three screw pump rotors, J. Mech. Des. Trans. ASME, 12, (1998) 589–592, https://doi.org/10.1115/1.2829319 [CrossRef] [Google Scholar]
  40. C. Feng, P. Yueyuan, X. Ziwen, S. Pengcheng, Thermodynamic performance simulation of a twin-screw multiphase pump, Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 215 (2001), 157–163. https://doi.org/10.1243/0954408011530406 [CrossRef] [Google Scholar]
  41. K. Räbiger, Fluid dynamic and thermodynamic modelling of multiphase screw pumps, operating on the threshold of an exclusive gas compression, 7th International Conference on Compressors and their Systems 2011, Pages 385–400, (2011), https://doi.org/10.1533/9780857095350.8.385 [CrossRef] [Google Scholar]
  42. D. Li, Z. He, C. Wang, Y. Guo, W. Wei, D. Lin, Z. Xing, Design methodology and performance analysis of conical rotors for dry screw vacuum pumps, Vacuum, (2021), https://doi.org/10.1016/j.vacuum.2020.110025 [Google Scholar]
  43. J. Wang, F. Cui, S. Wei, R. Sha, H. Liu, Study on a novel screw rotor with variable crosssection profiles for twin-screw vacuum pumps, Vacuum, (2017), http://dx.doi.org/10.1016/j.vacuum.2017.09.006 [Google Scholar]
  44. G. Di Giovine, L. Mariani, D. Di Battista, R. Cipollone, F. Fremondi, Modeling and experimental validation of a triple-screw pump for internal combustion engine cooling, Applied Thermal Engineering, (2021, under review available as private publication). [Google Scholar]
  45. R. G. Budynas, J. Keith Nisbett, Shigley’s Mechanical Engineering Design, 9th Edition, McGraw-Hill, (2011). [Google Scholar]
  46. M. Di Bartolomeo, F. Fatigati, D. Di Battista, R. Cipollone, A New Approach for Designing and Testing Engine Coolant Pump Electrically Actuated, SAE Technical Paper 2020-01-1161, (2020), DOI: 10.4271/2020-01-1161. [Google Scholar]
  47. D. Di Battista, R. Cipollone, Experimental and numerical assessment of methods to reduce warm up time of engine lubricant oil, Applied Energy 162 (2016) 570–580., http://dx.doi.org/10.1016/j.apenergy.2015.10.127 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.