Open Access
Issue
E3S Web Conf.
Volume 312, 2021
76th Italian National Congress ATI (ATI 2021)
Article Number 09003
Number of page(s) 18
Section Smart Energy Systems
DOI https://doi.org/10.1051/e3sconf/202131209003
Published online 22 October 2021
  1. European Parliament and Council of 11 December 2018, “DIRETTIVA (UE) 2018/2001 DEL PARLAMENTO EUROPEO E DEL CONSIGLIO dell’ 11 dicembre 2018 sulla promozione dell’uso dell’energia da fonti rinnovabili,” Off. J. Eur. Union, vol. 2018, p. 128, 2018, [Online]. Available: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018L2001&from=EN. [Google Scholar]
  2. L.M. Pastore, G. Lo Basso, M. Sforzini, and L. de Santoli, “Heading Towards 100% of Renewable Energy Sources Fraction: a critical overview on Smart Energy Systems planning and flexibility measures,” E3S Web Conf., vol. 197, p. 01003, Oct. 2020, doi: 10.1051/e3sconf/202019701003. [Google Scholar]
  3. S. Mokeke and L.Z. Thamae, “The impact of intermittent renewable energy generators on Lesotho national electricity grid,” Electr. Power Syst. Res., vol. 196, p. 107196, Jul. 2021, doi: 10.1016/j.epsr.2021.107196. [Google Scholar]
  4. J. Rùa, A. Verheyleweghen, J. Jäschke, and L.O. Nord, “Optimal scheduling of flexible thermal power plants with lifetime enhancement under uncertainty,” Appl. Therm. Eng., vol. 191, p. 116–794, Jun. 2021, doi: 10.1016/j.applthermaleng.2021.116794. [Google Scholar]
  5. L. Peruzzi, F. Salata, A. de Lieto Vollaro, and R. de Lieto Vollaro, “The reliability of technological systems with high energy efficiency in residential buildings,” Energy Build., vol. 68, pp. 19–24, Jan. 2014, doi: 10.1016/j.enbuild.2013.09.027. [Google Scholar]
  6. F. Salata, A. de Lieto Vollaro, R. de LietoVollaro, and L. Mancieri, “Method for energy optimization with reliability analysis of a trigeneration and teleheating system on urban scale: A case study,” Energy Build., vol. 86, pp. 118–136, Jan. 2015, doi: 10.1016/j.enbuild.2014.09.056. [Google Scholar]
  7. K. Jamaluddin, S.R. Wan Alwi, Z. Abd Manan, K. Hamzah, and J.J. Klemes, “Performance of Centralised Trigeneration Plant on Sensitivity Analysis of Total Site System,” IOP Conf. Ser. Mater. Sci. Eng., vol. 991, p. 012141, Dec. 2020, doi: 10.1088/1757-899X/991/1/012141. [Google Scholar]
  8. T. Korpela, J. Kaivosoja, Y. Majanne, L. Laakkonen, M. Nurmoranta, and M. Vilkko, “Utilization of District Heating Networks to Provide Flexibility in CHP Production,” Energy Procedia, vol. 116, pp. 310–319, Jun. 2017, doi: 10.1016/j.egypro.2017.05.077. [Google Scholar]
  9. M. Mysior, P. Stçpien, and S. Koziolek, “Modeling and Experimental Validation of Compression and Storage of Raw Biogas,” Processes, vol. 8, no. 12, p. 1556, Nov. 2020, doi: 10.3390/pr8121556. [Google Scholar]
  10. P. Kolasinski, “Domestic Organic Rankine Cycle-Based Cogeneration Systems as a Way to Reduce Dust Emissions in Municipal Heating,” Energies, vol. 13, no. 15, p. 3983, Aug. 2020, doi: 10.3390/en13153983. [Google Scholar]
  11. T. Asni and V. Andiappan, “Optimal Design of Biomass Combined Heat and Power System Using Fuzzy Multi-Objective Optimisation: Considering System Flexibility, Reliability, and Cost,” ProcessIntegr. Optim. Sustain., vol. 5, no. 2, pp. 207–229, Jun. 2021, doi: 10.1007/s41660-020-00137-4. [Google Scholar]
  12. G. Lo Basso, L. de Santoli, A. Albo, and B. Nastasi, “H2NG (hydrogen-natural gas mixtures) effects on energy performances of a condensing micro-CHP (combined heat and power) for residential applications: An expeditious assessment of water condensation and experimental analysis,” Energy, vol. 84, pp. 397–418, 2015, doi: 10.1016/j.energy.2015.03.006. [Google Scholar]
  13. M. Hemmati et al., “Economic-environmental analysis of combined heat and power-based reconfigurable microgrid integrated with multiple energy storage and demand response program,” Sustain. Cities Soc., vol. 69, p. 102790, Jun. 2021, doi: 10.1016/j.scs.2021.102790. [Google Scholar]
  14. P.J. Mago and A.D. Smith, “Evaluation of the potential emissions reductions from the use of CHP systems in different commercial buildings,” Build. Environ., vol. 53, pp. 74–82, Jul. 2012, doi: 10.1016/j.buildenv.2012.01.006. [Google Scholar]
  15. G. Lo Basso, F. Rosa, D. Astiaso Garcia, and F. Cumo, “Hybrid systems adoption for lowering historic buildings PFEC (primary fossil energy consumption) - A comparative energy analysis,” Renew. Energy, vol. 117, pp. 414–433, 2018, doi: 10.1016/j.renene.2017.10.099. [Google Scholar]
  16. G. Fan, M. Li, X. Chen, X. Dong, and K. Jermsittiparsert, “Analysis of a multiobjective hybrid system to generate power in different environmental conditions based on improved the Barnacles Mating Optimizer Algorithm,” Energy Reports, vol. 7, pp. 2950–2961, Nov. 2021, doi: 10.1016/j.egyr.2021.05.023. [Google Scholar]
  17. A. Franco and F. Fantozzi, “Experimental analysis of a self consumption strategy for residential building: The integration of PV system and geothermal heat pump,” Renew. Energy, vol. 86, pp. 1075–1085, Feb. 2016, doi: 10.1016/j.renene.2015.09.030. [Google Scholar]
  18. H. Fathabadi, “Novel fast and high accuracy maximum power point tracking method for hybrid photovoltaic/fuel cell energy conversion systems,” Renew. Energy, vol. 106, pp. 232–242, Jun. 2017, doi: 10.1016/j.renene.2017.01.028. [Google Scholar]
  19. M. Sforzini, G. Lo Basso, R. Paiolo, L. De Santoli, and F. Cumo, “Adsorption gas Heat Pump fuelled with hydrogen enriched natural gas blends: the analytical simulation model development and validation,” E3S Web Conf., vol. 197, p. 08002, Oct. 2020, doi: 10.1051/e3sconf/202019708002. [Google Scholar]
  20. Z. Liu, W. Xu, X. Zhai, C. Qian, and X. Chen, “Feasibility and performance study of the hybrid ground-source heat pump system for one office building in Chinese heating dominated areas,” Renew. Energy, vol. 101, pp. 1131–1140, Feb. 2017, doi: 10.1016/j.renene.2016.10.006. [Google Scholar]
  21. D. Chemisana, J.I. Rosell, A. Riverola, and C. Lamnatou, “Experimental performance of a Fresnel-transmission PVT concentrator for building-façade integration,” Renew. Energy, vol. 85, pp. 564–572, Jan. 2016, doi: 10.1016/j.renene.2015.07.009. [Google Scholar]
  22. G. Graditi et al., “Innovative control logics for a rational utilization of electric loads and air-conditioning systems in a residential building,” Energy Build., vol. 102, pp. 1–17, Sep. 2015, doi: 10.1016/j.enbuild.2015.05.027. [Google Scholar]
  23. P. Siano, G. Graditi, M. Atrigna, and A. Piccolo, “Designing and testing decision support and energy management systems for smart homes,” J. Ambient Intell. Humaniz. Comput., vol. 4, no. 6, pp. 651–661, Dec. 2013, doi: 10.1007/s12652-013-0176-9. [Google Scholar]
  24. M. Bollen, A. Larsson, and S. Rnnberg, “Grid impact from PV-installations in northern Scandinavia,” in 22nd International Conference and Exhibition on Electricity Distribution (CIRED 2013), 2013, pp. 1036–1036, doi: 10.1049/cp.2013.1046. [Google Scholar]
  25. L. Ji, X. Liang, Y. Xie, G. Huang, and B. Wang, “Optimal design and sensitivity analysis of the stand-alone hybrid energy system with PV and biomass-CHP for remote villages,” Energy, vol. 225, p. 120323, Jun. 2021, doi: 10.1016/j.energy.2021.120323. [Google Scholar]
  26. U. Lehtinen, J. Juntunen, and J. Juga, “Evaluating the feasibility of bio-energy based heat and power production in rural community,” Biomass and Bioenergy, vol. 139, p. 105578, Aug. 2020, doi: 10.1016/j.biombioe.2020.105578. [Google Scholar]
  27. Enea, “Cogenerazione ad alto rendimento, Aggiornamento dell’edizione 1,” no. Vi, pp. 1–18, 2018. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.