Open Access
Issue
E3S Web Conf.
Volume 312, 2021
76th Italian National Congress ATI (ATI 2021)
Article Number 10001
Number of page(s) 16
Section Transforming Energy into Circular Economy
DOI https://doi.org/10.1051/e3sconf/202131210001
Published online 22 October 2021
  1. IEA (International Energy Agency), World Energy Outlook 2018 (2018). [Google Scholar]
  2. IEA (International Energy Agency), Energy Policy Review, European Union 2020 (2020). [Google Scholar]
  3. W. Strielkowski, D. Streimikiene, A. Fomina, E. Semenova, Internet of Energy (IoE) and High-Renewables Electricity System Market Design. Energies. 12, 4790 (2019). [CrossRef] [Google Scholar]
  4. S. Ramos, J.M. Duarte, F.J. Duarte, Z. Vale, A data-mining-based methodology to support MV electricity customers’ characterization. Energy and Buildings. 91, 16–25 (2015). [CrossRef] [Google Scholar]
  5. T. Räsänen, D. Voukantsis, H. Niska, K. Karatzas, M. Kolehmainen, Data-based method for creating electricity use load profiles using large amount of customerspecific hourly measured electricity use data. Applied Energy. 87, 3538–3545 (2010). [CrossRef] [Google Scholar]
  6. O.Y. Al-Jarrah, Y. Al-Hammadi, P.D. Yoo, S. Muhaidat, Multi-Layered Clustering for Power Consumption Profiling in Smart Grids. IEEE Access. 5, 18459–18468 (2017). [CrossRef] [Google Scholar]
  7. J. Yang, C. Ning, C. Deb, F. Zhang, D. Cheong, S.E. Lee, C. Sekhar, K.W. Tham, k-Shape clustering algorithm for building energy usage patterns analysis and forecasting model accuracy improvement. Energy and Buildings. 146, 27–37 (2017). [CrossRef] [Google Scholar]
  8. L. Hernandez, C. Baladron, J. Aguiar, B. Carro, A. Sanchez-Esguevillas, Classification and Clustering of Electricity Demand Patterns in Industrial Parks. Energies. 5, 5215–5228 (2012). [CrossRef] [Google Scholar]
  9. A. Ullah, K. Haydarov, I. Ul Haq, K. Muhammad, S. Rho, M. Lee, S.W. Baik, Deep Learning Assisted Buildings Energy Consumption Profiling Using Smart Meter Data. Sensors. 20, 873 (2020). [CrossRef] [Google Scholar]
  10. J.D. Rhodes, W.J. Cole, C.R. Upshaw, T.F. Edgar, M.E. Webber, Clustering analysis of residential electricity demand profiles. Applied Energy. 135, 461–471 (2014). [CrossRef] [Google Scholar]
  11. M. Richard, H. Fortin, A. Poulin, M. Leduc, Daily load profiles clustering: a powerful tool for demand side management in medium-sized industries. 12 (2017). [Google Scholar]
  12. Y. Kim, J.-M. Ko, S.-H., Choi, Methods for generating TLPs (typical load profiles) for smart grid-based energy programs. In: 2011 IEEE Symposium on Computational Intelligence Applications In Smart Grid (CIASG). pp. 1–6. IEEE, Paris, French Guiana (2011). [Google Scholar]
  13. S.K. Popat, Review and Comparative Study of Clustering Techniques. 5, 8 (2014). [Google Scholar]
  14. F. Bonacina, E.S. Miele, A. Corsini, Time Series Clustering: A Complex NetworkBased Approach for Feature Selection in Multi-Sensor Data. Modelling. 1, 1–21 (2020). [CrossRef] [Google Scholar]
  15. L.N. Ferreira, L. Zhao, Time series clustering via community detection in networks. Information Sciences. 326, 227–242 (2016). [CrossRef] [Google Scholar]
  16. A. Javed, B.S. Lee, D.M Rizzo, A benchmark study on time series clustering. Machine Learning with Applications. 1, 100001 (2020). [CrossRef] [Google Scholar]
  17. F. Bonacina, A. Corsini, L. Cardillo, F. Lucchetta, Complex Network Analysis of Photovoltaic Plant Operations and Failure Modes. Energies. 12, 1995 (2019). [CrossRef] [Google Scholar]
  18. A. Corsini, F. Bonacina, S. Feudo, A. Marchegiani, P. Venturini, Internal Combustion Engine sensor network analysis using graph modeling. Energy Procedia. 126, 907–914 (2017). [CrossRef] [Google Scholar]
  19. A.S. da Mata, Complex Networks: a Mini-review. Braz J Phys. 50, 658–672 (2020). [CrossRef] [Google Scholar]
  20. https://networkx.org/ [Google Scholar]
  21. Z.S Abdallah, L. Du, G.I Webb, Data Preparation. In: Sammut, C. and Webb, G.I. (eds.) Encyclopedia of Machine Learning and Data Mining. pp. 318–327. Springer U.S., Boston, MA (2017). [CrossRef] [Google Scholar]
  22. M. Lepot, J.-B. Aubin, F. Clemens, Interpolation in Time Series: An Introductive Overview of Existing Methods, Their Performance Criteria and Uncertainty Assessment. Water. 9, 796 (2017). [CrossRef] [Google Scholar]
  23. F. Pukelsheim, The Three Sigma Rule, The American Statistician 48 88–91 (1994). [Google Scholar]
  24. https://www.kdnuggets.com/2017/02/removing-outliers-standard-deviation-python.html [Google Scholar]
  25. https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.resample.html [Google Scholar]
  26. Z. Yu, B.C.M. Fung, F. Haghighat, H. Yoshino, E. Morofsky, A systematic procedure to study the influence of occupant behavior on building energy consumption. Energy and Buildings. 43, 1409–1417 (2011). [CrossRef] [Google Scholar]
  27. C. Yuan, H. Yang, Research on K-Value Selection Method of K-Means Clustering Algorithm. J. 2, 226–235 (2019). [Google Scholar]
  28. P.J. Rousseeuw, Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics. 20, 53–65 (1987). [CrossRef] [Google Scholar]
  29. V.D. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefebvre, Fast unfolding of communities in large networks. J. Stat. Mech. 2008, P10008 (2008). [CrossRef] [Google Scholar]
  30. https://open-enernoc-data.s3.amazonaws.com/anon/index.html [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.