Open Access
Issue
E3S Web Conf.
Volume 312, 2021
76th Italian National Congress ATI (ATI 2021)
Article Number 10002
Number of page(s) 20
Section Transforming Energy into Circular Economy
DOI https://doi.org/10.1051/e3sconf/202131210002
Published online 22 October 2021
  1. C. Schenone, I. Delponte, I. Pittaluga, The preparation of the Sustainable Energy Action Plan as a city-level tool for sustainability: The case of Genoa, J. Renew. Sustain. Energy. 7 (2015). https://doi.org/10.1063Z1.4921723. [Google Scholar]
  2. C. of M. European Commission, Data about SECAPs and SEAP, (2020). https://www.covenantofmayors.eu/en/. [Google Scholar]
  3. D.J. Nowak, D.E. Crane, Carbon storage and sequestration by urban trees in the USA, n.d. www.elsevier.com/locate/envpol. [Google Scholar]
  4. F.P. Nicese, G. Colangelo, R. Comolli, L. Azzini, S. Lucchetti, P.A. Marziliano, G. Sanesi, Estimating CO2 balance through the Life Cycle Assessment prism: A case - Study in an urban park, Urban For. Urban Green. (2020). https://doi.org/10.1016/j.ufug.2020.126869. [Google Scholar]
  5. P. Lauri, N. Forsell, A. Korosuo, P. Havlik, M. Obersteiner, A. Nordin, Impact of the 2 °C target on global woody biomass use, For. Policy Econ. 83 (2017) 121–130. https://doi.org/10.1016/j.forpol.2017.07.005. [Google Scholar]
  6. B.K. Sovacool, How long will it take? Conceptualizing the temporal dynamics of energy transitions, Energy Res. Soc. Sci. 13 (2016) 202–215. https://doi.org/10.1016/j.erss.2015.12.020. [Google Scholar]
  7. European Commission, Sustainable Europe Investment Plan European - European Green Deal Investment Plan, J. Chem. Inf. Model. 53 (2019) 1689–1699. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52020DC0021&from=EN. [Google Scholar]
  8. European Commission, Stepping up Europe’s 2030 climate ambition Investing in a climate-neutral future for the benefit of our people, J. Chem. Inf. Model. 53 (2020) 1689–1699. [Google Scholar]
  9. C. Poeplau, A. Don, L. Vesterdal, J. Leifeld, B. Van Wesemael, J. Schumacher, A. Gensior, Temporal dynamics of soil organic carbon after land-use change in the temperate zone - carbon response functions as a model approach, Glob. Chang. Biol. 17 (2011) 2415–2427. https://doi.org/10.1111/j.1365-2486.2011.02408.x. [Google Scholar]
  10. M.V. Chiriacô. R. Valentini, A land-based approach for climate change mitigation in the livestock sector, J. Clean. Prod. 283 (2021). https://doi.org/10.1016/j.jclepro.2020.124622. [Google Scholar]
  11. FAO, Recarbonitation of global soils, (2019). [Google Scholar]
  12. A. Rivera, C. Bravo, G. Buob, Climate Change and Land Ice, 2017. https://doi.org/10.1002/9781118786352.wbieg0538. [Google Scholar]
  13. E. Eriksson, A.R. Gillespie, L. Gustavsson, O. Langvall, M. Olsson, R. Sathre, J. Stendahl, Integrated carbon analysis of forest management practices and wood substitution, Can. J. For. Res. 37 (2007) 671–681. https://doi.org/10.1139/X06-257. [Google Scholar]
  14. A. Cinocca, L. Di Paolo, S. Abbate, R. Cipollone, Methodologies for Sustainable Energy Action Plan design and monitoring applied to the Municipality of Avezzano, Abruzzo Region, Italy, E3S Web Conf. 197 (2020). https://doi.org/10.1051/e3sconf/202019708013. [Google Scholar]
  15. Ministry of Economic Development, Ministry of the Environment and Protection of Natural Resources and the Sea, Ministry of Infrastructure and Transport, INTEGRATED NATIONAL ENERGY AND CLIMATE Ministry of Economic Development, (2019). [Google Scholar]
  16. F.W. Jim Penman, Michael Gytarsky, Taka Hiraishi, Thelma Krug, Dina Kruger, Riitta Pipatti, Leandro Buendia, Kyoko Miwa, Todd Ngara, IPCC, Good Practice Guidance for Land Use, Land-Use Change and Forestry, 2015. https://doi.org/10.1016/j.crvi.2014.11.004. [Google Scholar]
  17. D. Ditto, M. Acutis, S. Bocchi, Attuale stato dell’analisi funzionale della crescita delle piante Veneto Regional Environment Energy, Special Projects Office View project Beyond Classical Growth Models in Biology View project, 2010. https://www.researchgate.net/publication/256780084. [Google Scholar]
  18. B. Zeide, Analysis of Growth Equations, For. Sci. 39 (1993) 594–616. https://doi.org/10.1093/forestscience/39.3.594. [Google Scholar]
  19. V.H. Dale, T.W. Doyle, H.H. Shugart, A comparison of tree growth models, 1985. [Google Scholar]
  20. INFC, Inventario Nazionale delle Foreste e dei serbatoi forestali di Carbonio INFC- 2005 Tabella 3. 4. 2 - Valori totali e per unità di superficie del numero totale di soggetti della rinnovazione per le categorie forestali dei Boschi alti (parte 1 di 6) Bosc, d (2005) 2–9. [Google Scholar]
  21. Eggleston, H.S., Buendia, L., Miwa, K., 2006 IPCC Guidelines for National Greenhouse Gas Inventories, (2006). [Google Scholar]
  22. U.S. Enviromental Protection Agency, Greenhouse Gas Mitigation Potential in U.S. Forestry and Agriculture, (2005). [Google Scholar]
  23. J.H. Holland, Adaptation in natural and artificial systems : an introductory analysis with applications to biology, control, and artificial intelligence, Ann Arbor Univ. Michigan Press 1975. (1975) viii, 183 p. http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=8929. [Google Scholar]
  24. J.H. Goldberg, David, E. and Holland, Genetic algorithms and machine learning, Kluwer Acad. Publ. Publ. 19 (1988) 117–119. [Google Scholar]
  25. R. Carapellucci, L. Giordano, A Genetic Algorithm for Optimizing Heat Recovery Steam Generators of Combined Cycle Power Plants., ASME Int. Mech. Eng. Congr. Expo. 54907 (n.d.) 121–130. https://doi.org/doi:10.1115/IMECE2011-63703, ISBN: 978-0-7918-5490-7. [Google Scholar]
  26. R. Carapellucci, L. Giordano, A methodology for the synthetic generation of hourly wind speed time series based on some known aggregate input data, Appl. Energy. 101 (2013) 541–550. https://doi.org/10.1016/j.apenergy.2012.06.044. [Google Scholar]
  27. M. Tucker, Carbon dioxide emissions and global GDP, Ecol. Econ. 15 (1995) 215–223. https://doi.org/10.1016/0921-8009(95)00045-3. [Google Scholar]
  28. J.G. Canadell, C. Le Quéré, M.R. Raupach, C.B. Field, E.T. Buitenhuis, P. Ciais, T.J. Conway, N.P. Gillett, R.A. Houghton, G. Marland, Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks, Proc. Natl. Acad. Sci. U.S.A. 104 (2007) 18866–18870. https://doi.org/10.1073/pnas.0702737104. [Google Scholar]
  29. Provincia dell’Aquila, SEAP Avezzano, covenant of mayors, (2013). https://mycovenant.eumayors.eu/docs/seap/2656_1348844661.pdf. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.