Open Access
Issue
E3S Web Conf.
Volume 313, 2021
19th International Stirling Engine Conference (ISEC 2021)
Article Number 03001
Number of page(s) 21
Section Heat Transfer / Fluid Flow Analysis
DOI https://doi.org/10.1051/e3sconf/202131303001
Published online 22 October 2021
  1. H.O. McMahon, W.E. Gifford, A new low-temperature gas expansion cycle-Part I, Advances in Cryogenic Engineering 5 (1960), 354–367. [Google Scholar]
  2. G. Walker, Cryocoolers; Part 2: Applications (Plenum Press, New York, London, 1983). [Google Scholar]
  3. P.A. Rios, An analytical and experimental Investigation of the Stirling Engine: Department of Mechanical Engineering. Dissertation, Massachusetts Institute of Technology, 1969. [Google Scholar]
  4. P.A. Rios, An Approximate Solution to the Shuttle Heat-Transfer Losses in a Reciprocating Machine, Journal of Engineering for Gas Turbines and Power 93 (1971), 177–182 https://doi.org/10.1115/1.3445549. [CrossRef] [Google Scholar]
  5. F.N. Magee, R.D. Doering, Vuilleumier-Cycle Cryogenic Refrigeration Development, Air Force Flight Dynamics Laboratory (Air Force Flight Dynamics Laboratory, Ohio, 1968). [Google Scholar]
  6. F.J. Zimmerman, R.C. Longsworth, Shuttle Heat Transfer, in: Cryogenic Engineering Conference, Boulder, Colorado, 342–351 (1971). [Google Scholar]
  7. R. Radebaugh, J.E. Zimmerman, Shuttle Heat Transfer in Plastic Displacers at Low Speeds, National Bureau of Standards, Cryogenics Division (National Bureau of Standards, Cryogenics Division, Boulder, Colorado, 1978). [Google Scholar]
  8. D.M. Berchowitz, R.W. Berggren, Appendix Gap Losses in Reciprocating Machines, Mechanical Technology Incorporated (Mechanical Technology Incorporated, Latham, NY, 1981). [Google Scholar]
  9. D.M. Berchowitz, Stirling Cycle Engine Design and Optimization: Faculty of Engineering. Dissertation, University of the Witwatersrand, 1986. [Google Scholar]
  10. I. Urieli, D.M. Berchowitz, Stirling Cycle Engine Analysis (Adam Hilger Ltd, Bristol, 1984). [Google Scholar]
  11. S.K. Andersen, H. Carlsen, P.G. Thomsen, Preliminary results from a numerical study on the appendix gap losses in a Stirling engine, in: International Stirling Association, Proceedings 12th ISEC, Durham UK, 336–347 (2005). [Google Scholar]
  12. I. Geue, J. Pfeiffer, H.-D. Kühl, Laboratory-Scale Stirling-Vuilleumier Hybrid System Part II: Experimental Results, J Propul Power 29 (2013), 812–824 https://doi.org/10.2514/1.B34726. [CrossRef] [Google Scholar]
  13. J. Pfeiffer, H.-D. Kühl, Review of Models for Appendix Gap Losses in Stirling Cycle Machines, J Propul Power 30 (2014), 1419–1432 https://doi.org/10.2514/1.B35132. [CrossRef] [Google Scholar]
  14. H.-D. Kühl, Wärmetransformationsprozesse ohne Phasenumwandlung thermodynamische Konzeption, Auslegung und Optimierung an Beispielen aus der Wärmepumpenund Kältetechnik. Habilitationsschrift, Universität Dortmund, Fachbereich Chemietechnik, 2003. [Google Scholar]
  15. J. Pfeiffer, H.-D. Kühl, New Analytical Model for Appendix Gap Losses in Stirling Cycle Machines, Journal of Thermophysics and Heat Transfer 30 (2016), 288–300 https://doi.org/10.2514/1.T4606. [CrossRef] [Google Scholar]
  16. H.M. Chang, D.J. Park, S. Jeong, Effect of gap flow on shuttle heat transfer, Cryogenics 40 (2000), 159–166 https://doi.org/10.1016/S0011-2275(00)00020-5. [CrossRef] [Google Scholar]
  17. J.H. Baik, H.M. Chang, An Exact Solution for Shuttle Heat-Transfer, Cryogenics 35 (1995), 9–13. [CrossRef] [Google Scholar]
  18. J. Pfeiffer, H.-D. Kühl, Optimization of the Appendix Gap Design in Stirling Engines, Journal of Thermophysics and Heat Transfer 30 (2016), 831–842 https://doi.org/10.2514/1.t4729. [CrossRef] [Google Scholar]
  19. L.G. Thieme, Low-Power Baseline Test Results for the GPU 3 Stirling Engine, National Aeronautics and Space Administration (NASA) (NASA; Lewis Research Center, 1979). [Google Scholar]
  20. J. Sauer, H.-D. Kühl, Preliminary Results of Unsteady Gas Temperature Measurements in the Appendix Gap Section of an Experimental Stirling Engine, in: International Stirling Association, Proceedings 17th ISEC, Newcastle upon Tyne, 589–597 (2016). [Google Scholar]
  21. J. Sauer, H.-D. Kühl, Analysis of unsteady gas temperature measurements in the appendix gap of a stirling engine, J Propul Power 34 (2018), 1039–1051 https://doi.org/10.2514/6.2017-4795. [CrossRef] [Google Scholar]
  22. I. Geue, J. Pfeiffer, H.-D. Kühl, Laboratory-Scale Stirling-Vuilleumier Hybrid System Part I: Application of Similarity-Based Design, J Propul Power 29 (2013), 800–811 https://doi.org/10.2514/1.B34673. [CrossRef] [Google Scholar]
  23. H.-D. Kühl, T. Pfeffer, S. Schulz, C. Walther, High speed gas temperature measurements in a Vuilleumier heat pump and their reproduction by differential computer simulation, in: International Stirling Association, Proceedings 8th ISEC, Ancona, 257–266 (1997). [Google Scholar]
  24. T. Pfeffer, H.-D. Kühl, S. Schulz, C. Walther, Entwicklung und experimentelle Untersuchung neuer Regeneratorkonzepte für regenerative Gaskreisprozesse am Beispiel einer Vuilleumier-Wärmepumpe, Forsch Ingenieurwes 65 (2000), 257–272 https://doi.org/10.1007/s100109900018. [CrossRef] [Google Scholar]
  25. J. Sauer, H.-D. Kühl, Experimental Investigation of Displacer Seal Geometry Effects in Stirling Cycle Machines, Energies 12 (2019), 4215 https://doi.org/10.3390/en12214215. [CrossRef] [Google Scholar]
  26. S.K. Andersen, Numerical Simulation of Cyclic Thermodynamic Processes: Department of Mechanical Engineering. Dissertation, Technical University of Denmark, 2006. [Google Scholar]
  27. S.C. Huang, R.W. Berggren, Evaluation of Stirling Engine Appendix Gap Losses, in: AIAA, Proc. 21st IECEC, San Diego, CA, 562–568 (1986). [Google Scholar]
  28. J. Sauer, H.-D. Kühl, Numerical model for Stirling cycle machines including a differential simulation of the appendix gap, Applied Thermal Engineering 111 (2017), 819–833 https://doi.org/10.1016/j.applthermaleng.2016.09.176. [CrossRef] [Google Scholar]
  29. J. Sauer, H.-D. Kühl, Theoretically and experimentally founded simulation of the appendix gap in regenerative machines, Applied Thermal Engineering 166 (2020), 114530 https://doi.org/10.1016/j.applthermaleng.2019.114530. [CrossRef] [Google Scholar]
  30. J. Pfeiffer, Unsteady Analytical Model for Appendix Gap Losses in Stirling Cycle Machines, Dissertation, Lehrstuhl für Thermodynamik, TU Dortmund (Dr. Hut, München, 2016). [Google Scholar]
  31. J. Sauer, H.-D. Kühl, Performance Improvements in Stirling Cycle Machines by a Modified Appendix Gap Geometry, Int. J. Energy Res. (submitted). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.