Open Access
Issue
E3S Web Conf.
Volume 313, 2021
19th International Stirling Engine Conference (ISEC 2021)
Article Number 03003
Number of page(s) 16
Section Heat Transfer / Fluid Flow Analysis
DOI https://doi.org/10.1051/e3sconf/202131303003
Published online 22 October 2021
  1. I. Urieli, and D.M. Berchowitz. Adam Higler Ltd., Bristol, England, UK (1983). [Google Scholar]
  2. F. De Monte. J. Prop. Power 13, 404–11 (1997). [Google Scholar]
  3. F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine. Fundamentals of heat and mass transfer Vol. 6. New York: Wiley (1996). [Google Scholar]
  4. T.W. Simon, and J.R. Seume. NASA-CR-182108. NASA (1988). [Google Scholar]
  5. A.A. Kornhauser, and J.L. Smith. In Proceedings of the 24th Intersociety Energy Conversion Engineering Conference, 2347–53. Washington, DC, USA: IEEE (1989). [Google Scholar]
  6. M. Kanzaka, and M. Iwabuchi. JSME International Journal. Ser. 2, Fluids Engineering, Heat Transfer, Power, Combustion, Thermophysical Properties. 35, p. 641–46 (1992). [Google Scholar]
  7. M. Kanzaka, M. Iwabuchi. JSME International Journal. Ser. 2, Fluids Engineering, Heat Transfer, Power, Combustion, Thermophysical Properties. 35, p. 647–52 (1992). [Google Scholar]
  8. H.-T. Shin, and N. Shigefumi. Heat Trans.—Jap. Res. 27, 415–30 (1998). [Google Scholar]
  9. A.S. Worlikar, and O.M. Knio. Num. Heat Trans., Part A: Appl. 35, 49–65 (1999). [Google Scholar]
  10. P. Bouvier, P. Stouffs, and J.-P. Bardon. Int. J. Heat Mass Trans. 48, 2473–82 (2005). [Google Scholar]
  11. M. Kuosa, K. Saari, A. Kankkunen, and T.-M. Tveit. Appl. Thermal Eng. 45–46, 15–23 (2012). [Google Scholar]
  12. G. Xiao, T. Zhou, M. Ni, C. Chen, Z. Luo, and K. Cen. Appl. Energy. 130, 830–37 (2014). [Google Scholar]
  13. G. Xiao, C. Chen, B. Shi, K. Cen, and M. Ni. Int. J. Heat Mass Trans. 71, 1–7 (2014). [Google Scholar]
  14. M. Ni, B. Shi, G. Xiao, Z. Luo, and K. Cen. Appl. Thermal Eng. 89, 569–77 (2015). [Google Scholar]
  15. I. Barreno, S.C. Costa, M. Cordon, M. Tutar, I. Urrutibeascoa, X. Gomez, and G. Castillo. Int. J. Thermal Sci. 97, 68–81 (2015). [Google Scholar]
  16. O.M. Ilori. Appl. Thermal Eng., 144, 910-925 (2018). [Google Scholar]
  17. F. Xin, Z. Liu, S. Wang, and W. Liu. Appl. Thermal Eng. 143, 182–92. [Google Scholar]
  18. F. Xin, M. Yu, W. Liu, and Z. Liu. Int. J. Thermal Sci. 168, 107063 (2021). [Google Scholar]
  19. J. Zarinchang, A. Yarmahmoudi. Selected Papers from the WSEAS Conferences in Spain, September 2008, Santander, Cantabria, Spain, September 23-25, p. 143–150 (2008). [Google Scholar]
  20. D. Yin, and H. B. Ma. Int. J. Heat Mass Trans. 66, 699–705 (2013). [Google Scholar]
  21. S. Lombardi, K. Bizon, F.S. Marra, and G. Continillo. Int. J. Thermod. 16, 155–62 (2013). [Google Scholar]
  22. J.D. Patil, and B.S. Gawali. Exp. Thermal Fluid Sci. 83, 37–46 (2017). [Google Scholar]
  23. S. Islas, R. Beltran-Chacon, N. Velázquez, D. Leal-Chávez, R. López-Zavala, and J.A. Aguilar-Jiménez. Appl. Thermal Eng. 170, 115039 (2020). [Google Scholar]
  24. T. S. Zhao, and P. Cheng. Int. J. Heat Fluid Flow. 17, 356–62 (1996). [Google Scholar]
  25. R. Akhavan, R. D. Kamm, and A. H. Shapiro. J. Fluid Mech. 225, 395–422 (1991). [Google Scholar]
  26. R. Beltrán-Chacon, D. Leal-Chavez, D. Sauceda, M. Pellegrini-Cervantes, and M. Borunda. Energy. 93, 2593–2603 (2015). [Google Scholar]
  27. A. C. M. Ferreira, M.L. Nunes, L.B. Martins, and S.F. Teixeira. In 11th World Congr. Comput. Mech. WCCM 2014, 5th Eur. Conf. Comput. Mech. ECCM 2014 6th Eur. Conf. Comput. Fluid Dyn. ECFD 2014, 3734–45. International Center for Numerical Methods in Engineering (2014). [Google Scholar]
  28. G.T. Udeh, S. Michailos, D. Ingham, K.J. Hughes, L. Ma, and M. Pourkashanian. En. Conv. Manag. 206, 112493 (2020). [Google Scholar]
  29. Y. Timoumi, I. Tlili, and S.B. Nasrallah. Ren. Energy. 33, 2134–44 (2008). [Google Scholar]
  30. C.J. Paul, and A. Engeda. Energy. 80, 85–97 (2015). [Google Scholar]
  31. E. Rogdakis, P. Bitsikas, G. Dogkas, and G. Antonakos. Thermal Sci. Eng. Progr. 11, 302–16 (2019). [Google Scholar]
  32. K. Wang, S. Dubey, F.H. Choo, and F. Duan. App. Energy. 183, 775–90 (2016). [Google Scholar]
  33. U. Munir, A.N. Shah, S.A.R. Gardezi, Z. Anwar, and M.S. Kamran. Case Studies Thermal Eng. 21, 100664 (2020). [Google Scholar]
  34. J.E. Thorsen, J. Bovin, and H. Carlsen. In IECEC 96. Proceedings of the 31st Intersociety Energy Conversion Engineering Conference, 2:1289–94. Washington, DC, USA: IEEE (1996). [Google Scholar]
  35. D.C. Wilcox, Turbulence modeling for CFD. La Canada, CA: DCW industries (1998). [Google Scholar]
  36. Y. Egorov, and F.R. Menter. in Notes on Num. Fluid Mech. And Mult. Design, 97, 261270 (2008). [Google Scholar]
  37. The OpenFOAM Foundation. OpenFOAM v8 User Guide. (2021). [Google Scholar]
  38. B.E. Poling, J.M. Prausnitz, and J.P. O’Connell. The Properties of Gases and Liquids. 5. ed. New York: McGraw-Hill (2001). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.